Two-dimensional Lorentz process for magnetotransport: Boltzmann-Grad limit

被引:1
作者
Nota, Alessia [1 ]
Saffirio, Chiara [2 ]
Simonella, Sergio [3 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 LAquila, Italy
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Ecole Normale Super, UMR CNRS 5669, CNRS & UMPA, 46 allee Italie, F-69364 Lyon, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2022年 / 58卷 / 02期
基金
瑞士国家科学基金会;
关键词
Lorentz gas; Magnetic field; Generalized Boltzmann equation; Low-density limit; Non-Markovian process; Memory terms; EQUATION; GAS; DERIVATION;
D O I
10.1214/21-AIHP1181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a system of charged, noninteracting classical particles moving in a Poisson distribution of hard-disk scatterers in two dimensions, under the effect of a magnetic field perpendicular to the plane. We prove that, in the low-density (Boltzmann-Grad) limit, the particle distribution evolves according to a generalized linear Boltzmann equation, previously derived and solved by Bobylev et al. (Phys. Rev. Lett. 75 (1995) 2, J. Stat. Phys. 87 (1997) 1205???1228, J. Stat. Phys. 102 (2001) 1133???1150). In this model, Boltzmann???s chaos fails, and the kinetic equation includes non-Markovian terms. The ideas of (Phys. Rev. 185 (1969) 308???322) can be however adapted to prove convergence of the process with memory.
引用
收藏
页码:1228 / 1243
页数:16
相关论文
共 26 条
  • [1] Derivation of the Fick's Law for the Lorentz Model in a Low Density Regime
    Basile, G.
    Nota, A.
    Pezzotti, F.
    Pulvirenti, M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (03) : 1607 - 1636
  • [2] Billingsley P., 1979, WILEY SERIES PROBABI
  • [3] There is more to be learned from the Lorentz model
    Bobylev, AV
    Maao, FA
    Hansen, A
    Hauge, EH
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (5-6) : 1205 - 1228
  • [4] 2-DIMENSIONAL MAGNETOTRANSPORT ACCORDING TO THE CLASSICAL LORENTZ MODEL
    BOBYLEV, AV
    MAAO, FA
    HANSEN, A
    HAUGE, EH
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (02) : 197 - 200
  • [5] From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model
    Bobylev, AV
    Hansen, A
    Piasecki, J
    Hauge, EH
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (5-6) : 1133 - 1150
  • [6] ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS
    BOLDRIGHINI, C
    BUNIMOVICH, LA
    SINAI, YG
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) : 477 - 501
  • [7] The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions
    Caglioti, Emanuele
    Golse, Francois
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 477 - 482
  • [8] On the Boltzmann-Grad Limit for the Two Dimensional Periodic Lorentz Gas
    Caglioti, Emanuele
    Golse, Francois
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (02) : 264 - 317
  • [9] Chernov N, 2009, J AM MATH SOC, V22, P821
  • [10] Desvillettes L, 2007, BULL INST MATH ACAD, V2, P637