CRISPR/Cas9-mediated genome editing in sea urchins

被引:12
|
作者
Lin, Che-Yi [1 ]
Oulhen, Nathalie [2 ]
Wessel, Gary [2 ]
Su, Yi-Hsien [1 ]
机构
[1] Acad Sinica, Inst Cellular & Organism Biol, Taipei, Taiwan
[2] Brown Univ, Dept Mol & Cell Biol & Biochem, Providence, RI 02912 USA
来源
ECHINODERMS, PT B | 2019年 / 151卷
关键词
DNA; GENES;
D O I
10.1016/bs.mcb.2018.10.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) technology enables rapid, targeted, and efficient changes in the genomes of various model organisms. The short guide RNAs (gRNAs) of the CRISPR/Cas9 system can be designed to recognize target DNA within coding regions for functional gene knockouts. Several studies have demonstrated that the CRISPR/Cas9 system efficiently and specifically targets sea urchin genes and results in expected mutant phenotypes. In addition to disrupting gene functions, modifications and additions to the Cas9 protein enable alternative activities targeted to specific sites within the genome. This includes a fusion of cytidine deaminase to Cas9 (Cas9-DA) for single nucleotide conversion in targeted sites. In this chapter, we describe detailed methods for the CRISPR/Cas9 application in sea urchin embryos, including gRNA design, in vitro synthesis of single guide RNA (sgRNA), and the usages of the CRISPR/Cas9 technology for gene knockout and single nucleotide editing. Methods for genotyping the resultant embryos are also provided for assessing efficiencies of gene editing.
引用
收藏
页码:305 / 321
页数:17
相关论文
共 50 条
  • [41] Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis)
    Lin, Zhelong
    Chen, Lei
    Tang, Shanjie
    Zhao, Mengjie
    Li, Tong
    You, Jia
    You, Changqing
    Li, Boshu
    Zhao, Qinghua
    Zhang, Dongmei
    Wang, Jianli
    Shen, Zhongbao
    Song, Xianwei
    Zhang, Shuaibin
    Cao, Xiaofeng
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2023, 65 (11) : 2416 - 2420
  • [42] Engineering TGMS in rice through CRISPR/Cas9-mediated genome editing
    Shanthinie, A.
    Varanavasiappan, S.
    Kumar, K. K.
    Arul, L.
    Meenakshisundaram, P.
    Harish, N.
    Shekhar, Shweta
    Sakthivel, Kausalya
    Manonmani, S.
    Jeyakumar, P.
    Banumathy, S.
    Kokiladevi, E.
    Sudhakar, D.
    CEREAL RESEARCH COMMUNICATIONS, 2024,
  • [43] Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica
    Li, Wenjing
    Li, Xuan
    Wang, Chunyang
    Huo, Guanzhong
    Zhang, Xinru
    Yu, Jintai
    Yu, Xiaoxiao
    Li, Jing
    Zhang, Chao
    Zhao, Jianjun
    Li, Yan
    Li, Jun
    ABIOTECH, 2024, 5 (02) : 202 - 208
  • [44] Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco
    Chang, Yanzi
    Liu, Baolong
    Jiang, Yanyan
    Cao, Dong
    Liu, Yongju
    Li, Yun
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2023, 23 (03)
  • [45] CRISPR/Cas9-mediated genome editing: From basic research to translational medicine
    Jacinto, Filipe V.
    Link, Wolfgang
    Ferreira, Bibiana I.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (07) : 3766 - 3778
  • [46] Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat
    Abdallah, Naglaa A.
    Elsharawy, Hany
    Abulela, Hamiss A.
    Thilmony, Roger
    Abdelhadi, Abdelhadi A.
    Elarabi, Nagwa I.
    GM CROPS & FOOD-BIOTECHNOLOGY IN AGRICULTURE AND THE FOOD CHAIN, 2022,
  • [47] Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco
    Yanzi Chang
    Baolong Liu
    Yanyan Jiang
    Dong Cao
    Yongju Liu
    Yun Li
    Functional & Integrative Genomics, 2023, 23
  • [48] A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice
    Liu, Xiaoli
    Zhou, Xiujuan
    Li, Kang
    Wang, Dehong
    Ding, Yuanhao
    Liu, Xianqing
    Luo, Jie
    Fang, Chuanying
    PEERJ, 2020, 8
  • [49] CRISPR/Cas9-mediated genome editing for correction of inherited retinal disease mutations
    Burnight, Erin R.
    Wiley, Luke A.
    DeLuca, Adam P.
    Oppedal, Douglas I.
    Scheetz, Todd E.
    Mullins, Robert F.
    Stone, Edwin M.
    Tucker, Budd A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [50] CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections
    Imhof, Saskia
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)