CRISPR/Cas9-mediated genome editing in sea urchins

被引:12
作者
Lin, Che-Yi [1 ]
Oulhen, Nathalie [2 ]
Wessel, Gary [2 ]
Su, Yi-Hsien [1 ]
机构
[1] Acad Sinica, Inst Cellular & Organism Biol, Taipei, Taiwan
[2] Brown Univ, Dept Mol & Cell Biol & Biochem, Providence, RI 02912 USA
来源
ECHINODERMS, PT B | 2019年 / 151卷
关键词
DNA; GENES;
D O I
10.1016/bs.mcb.2018.10.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) technology enables rapid, targeted, and efficient changes in the genomes of various model organisms. The short guide RNAs (gRNAs) of the CRISPR/Cas9 system can be designed to recognize target DNA within coding regions for functional gene knockouts. Several studies have demonstrated that the CRISPR/Cas9 system efficiently and specifically targets sea urchin genes and results in expected mutant phenotypes. In addition to disrupting gene functions, modifications and additions to the Cas9 protein enable alternative activities targeted to specific sites within the genome. This includes a fusion of cytidine deaminase to Cas9 (Cas9-DA) for single nucleotide conversion in targeted sites. In this chapter, we describe detailed methods for the CRISPR/Cas9 application in sea urchin embryos, including gRNA design, in vitro synthesis of single guide RNA (sgRNA), and the usages of the CRISPR/Cas9 technology for gene knockout and single nucleotide editing. Methods for genotyping the resultant embryos are also provided for assessing efficiencies of gene editing.
引用
收藏
页码:305 / 321
页数:17
相关论文
共 27 条
[1]   mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay [J].
Anderson, Jennifer L. ;
Mulligan, Timothy S. ;
Shen, Meng-Chieh ;
Wang, Hui ;
Scahill, Catherine M. ;
Tan, Frederick J. ;
Du, Shao J. ;
Busch-Nentwich, Elisabeth M. ;
Farber, Steven A. .
PLOS GENETICS, 2017, 13 (11)
[2]  
Angerer LM, 2004, METHOD CELL BIOL, V74, P699
[3]   Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening [J].
Calestani, C ;
Rast, JP ;
Davidson, EH .
DEVELOPMENT, 2003, 130 (19) :4587-4596
[4]   SpBase: the sea urchin genome database and web site [J].
Cameron, R. Andrew ;
Samanta, Manoj ;
Yuan, Autumn ;
He, Dong ;
Davidson, Eric .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D750-D754
[5]   Recent advances in functional perturbation and genome editing techniques in studying sea urchin development [J].
Cui, Miao ;
Lin, Che-Yi ;
Su, Yi-Hsien .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (05) :309-318
[6]   Genetic compensation: A phenomenon in search of mechanisms [J].
El-Brolosy, Mohamed A. ;
Stainier, Didier Y. R. .
PLOS GENETICS, 2017, 13 (07)
[7]   CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes [J].
Gilbert, Luke A. ;
Larson, Matthew H. ;
Morsut, Leonardo ;
Liu, Zairan ;
Brar, Gloria A. ;
Torres, Sandra E. ;
Stern-Ginossar, Noam ;
Brandman, Onn ;
Whitehead, Evan H. ;
Doudna, Jennifer A. ;
Lim, Wendell A. ;
Weissman, Jonathan S. ;
Qi, Lei S. .
CELL, 2013, 154 (02) :442-451
[8]   Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers [J].
Hilton, Isaac B. ;
D'Ippolito, Anthony M. ;
Vockley, Christopher M. ;
Thakore, Pratiksha I. ;
Crawford, Gregory E. ;
Reddy, Timothy E. ;
Gersbach, Charles A. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :510-U225
[9]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[10]   Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J].
Komor, Alexis C. ;
Kim, Yongjoo B. ;
Packer, Michael S. ;
Zuris, John A. ;
Liu, David R. .
NATURE, 2016, 533 (7603) :420-+