Ample vector bundles of small curve genera

被引:14
作者
Maeda, H [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Chuo Ku, Fukuoka 810, Japan
关键词
Vector Bundle; Nonnegative Integer; Projective Variety; Curve Genus; Small Curve;
D O I
10.1007/s000130050190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a vector bundle of rank n - 1 on a smooth complex projective variety X of dimension n greater than or equal to 3, and let g(X, E) be the curve genus of (X, E) defined by the formula 2g(X, E) - 2 = (K-X + c(1)(E))(c-1)(E), where K-X is the canonical bundle of X. Then it is proved that g(X, E) is a nonnegative integer if E is ample. Moreover,polarized pairs (X, E) with g(X, E) less than or equal to 1 are completely classified.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 9 条
[1]   POSITIVITY OF CHERN CLASSES OF AN AMPLE VECTOR BUNDLE [J].
BLOCH, S ;
GIESEKER, D .
INVENTIONES MATHEMATICAE, 1971, 12 (02) :112-&
[2]  
Fujita T., 1990, London Math. Soc. Lecture Note Ser., V155
[3]   THE CONE OF CURVES OF ALGEBRAIC-VARIETIES [J].
KAWAMATA, Y .
ANNALS OF MATHEMATICS, 1984, 119 (03) :603-633
[4]   AMPLE VECTOR-BUNDLES WITH SECTIONS VANISHING ON PROJECTIVE SPACES OR QUADRICS [J].
LANTERI, A ;
MAEDA, H .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (04) :587-600
[5]   Ample and spanned vector bundles of minimal curve genus [J].
Lanteri, A ;
Maeda, H ;
Sommese, AJ .
ARCHIV DER MATHEMATIK, 1996, 66 (02) :141-149
[6]  
LANTERI A, AMPLE VECTOR BUNDLES
[7]  
Mukai Shigeru, 1992, Complex Projective Geometry, London Math. Soc. L. N. S., V179, P264, DOI 10.1017/CBO9780511662652.019
[8]   FANO MANIFOLDS AND VECTOR-BUNDLES [J].
PETERNELL, T ;
SZUREK, M ;
WISNIEWSKI, JA .
MATHEMATISCHE ANNALEN, 1992, 294 (01) :151-165
[9]   ON AMPLE VECTOR-BUNDLES WHOSE ADJUNCTION BUNDLES ARE NOT NUMERICALLY EFFECTIVE [J].
YE, YG ;
ZHANG, Q .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (03) :671-687