Nonlinear surface superconductivity in the large κ limit

被引:11
作者
Almog, Y [1 ]
机构
[1] Technion Israel Inst Technol, Fac Math, IL-32000 Haifa, Israel
关键词
surface superconductivity; Ginzburg-Landau; large kappa limit;
D O I
10.1142/S0129055X04002205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Ginzburg-Landau model for superconductivity is considered in two dimensions. We show, for smooth bounded domains, that the superconductivity order parameter decays exponentially fast away from the boundary as the Ginzburg-Landau parameter kappa, tends to infinity. We prove this result for applied magnetic fields satisfying h, - kappamuch greater than log kappa/kappa, and therefore, improve a recent result of Pan [16].
引用
收藏
页码:961 / 976
页数:16
相关论文
共 19 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   On the bifurcation and stability of periodic solutions of the Ginzburg-Landau equations in the plane [J].
Almog, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (01) :149-171
[3]   Non-linear surface superconductivity for Type II superconductors in the large-domain limit [J].
Almog, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :271-293
[4]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[5]   ASYMPTOTIC ANALYSIS OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY - REDUCTION TO A FREE-BOUNDARY MODEL [J].
CHAPMAN, SJ .
QUARTERLY OF APPLIED MATHEMATICS, 1995, 53 (04) :601-627
[6]  
CHAPMAN SJ, 1994, EUR J APPL MATH, V5, P449
[7]   Boundary concentration for eigenvalue problems related to the onset of superconductivity [J].
del Pino, M ;
Felmer, PL ;
Sternberg, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) :413-446
[8]   DIRECT OBSERVATION OF INDIVIDUAL FLUX LINES IN TYPE 2 SUPERCONDUCTORS [J].
ESSMANN, U ;
TRAUBLE, H .
PHYSICS LETTERS A, 1967, A 24 (10) :526-&
[9]  
Ginzburg V. L., 1950, ZH EKSP TEOR FIZ, V20, P1064, DOI DOI 10.1142/S0217979210055378
[10]   The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model [J].
Giorgi, T ;
Phillips, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (02) :341-359