Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile

被引:26
作者
Po, Agnese [1 ]
Giuliani, Alessandro [2 ]
Masiello, Maria Grazia [3 ]
Cucina, Alessandra [3 ,4 ]
Catizone, Angela [5 ]
Ricci, Giulia [6 ]
Chiacchiarini, Martina [1 ]
Tafani, Marco [7 ]
Ferretti, Elisabetta [7 ]
Bizzarri, Mariano [7 ,8 ]
机构
[1] Sapienza Univ, Dept Mol Med, Rome, Italy
[2] Ist Super Sanita, Environm & Hlth Dept, Rome, Italy
[3] Sapienza Univ, Dept Surg Pietro Valdoni, Rome, Italy
[4] Azienda Policlin Umberto I, Rome, Italy
[5] Sapienza Univ, Dept Anat Histol Forens Med & Orthoped, Rome, Italy
[6] Univ Campania Luigi Vanvitelli, Dept Expt Med, Naples, Italy
[7] Sapienza Univ, Dept Expt Med, Rome, Italy
[8] Sapienza Univ, Syst Biol Grp Lab, Rome, Italy
关键词
CELL MECHANICS; EXPRESSION; INTEGRINS; RESPONSES; CULTURE;
D O I
10.1038/s41526-019-0088-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells in simulated microgravity undergo a reversible morphology switch, causing the appearance of two distinct phenotypes. Despite the dramatic splitting into an adherent-fusiform and a floating-spherical population, when looking at the gene-expression phase space, cell transition ends up in a largely invariant gene transcription profile characterized by only mild modifications in the respective Pearson's correlation coefficients. Functional changes among the different phenotypes emerging in simulated microgravity using random positioning machine are adaptive modifications-as cells promptly recover their native phenotype when placed again into normal gravity-and do not alter the internal gene coherence. However, biophysical constraints are required to drive phenotypic commitment in an appropriate way, compatible with physiological requirements, given that absence of gravity foster cells to oscillate between different attractor states, thus preventing them to acquire a exclusive phenotype. This is a proof-of-concept of the adaptive properties of gene-expression networks supporting very different phenotypes by coordinated 'profile preserving' modifications.
引用
收藏
页数:13
相关论文
共 61 条
[1]  
Abdelmoaty H., 2015, BIOTECHNOLOGY
[2]  
[Anonymous], 2013, NATURE WORKS SCI SEL
[3]   Putting tumours in context [J].
Bissell, MJ ;
Radisky, D .
NATURE REVIEWS CANCER, 2001, 1 (01) :46-54
[4]   How Microgravity Affects the Biology of Living Systems [J].
Bizzarri, Mariano ;
Monici, Monica ;
van Loon, Jack J. W. A. .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[5]   Gravity sensing by cells: mechanisms and theoretical grounds [J].
Bizzarri, Mariano ;
Cucina, Alessandra ;
Palombo, Alessandro ;
Masiello, Maria Grazia .
RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2014, 25 :S29-S38
[6]   Nonequilibrium microtubule fluctuations in a model cytoskeleton [J].
Brangwynne, Clifford P. ;
Koenderink, Gijsje H. ;
MacKintosh, Frederick C. ;
Weitz, David A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[7]   Global Transcriptome Analysis in Mouse Calvarial Osteoblasts Highlights Sets of Genes Regulated by Modeled Microgravity and Identifies A "Mechanoresponsive Osteoblast Gene Signature" [J].
Capulli, Mattia ;
Rufo, Anna ;
Teti, Anna ;
Rucci, Nadia .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 107 (02) :240-252
[8]   A Multiscale Graph Theoretical Approach to Gene Regulation Networks: A Case Study in Atrial Fibrillation [J].
Censi, Federica ;
Giuliani, Alessandro ;
Bartolini, Pietro ;
Calcagnini, Giovanni .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (10) :2943-2946
[9]  
Clement Jade Q, 2007, J Gravit Physiol, V14, pP121
[10]   Alterations of the cytoskeleton in human cells in space proved by life-cell imaging [J].
Corydon, Thomas J. ;
Kopp, Sascha ;
Wehland, Markus ;
Braun, Markus ;
Schuette, Andreas ;
Mayer, Tobias ;
Huelsing, Thomas ;
Oltmann, Hergen ;
Schmitz, Burkhard ;
Hemmersbach, Ruth ;
Grimm, Daniela .
SCIENTIFIC REPORTS, 2016, 6