Bifurcations in 2D Spatiotemporal Maps

被引:3
作者
Sahari, Mohamed Lamine [1 ]
Taha, Abdel-Kaddous [2 ]
Randriamihamison, Louis [3 ]
机构
[1] Badji Mokhtar Annaba Univ, Dept Math, LANOS Lab, POB 12, Annaba 23000, Algeria
[2] Fed Univ Toulouse Midi Pyrenees, INSA, 135 Ave Rangueil, F-31077 Toulouse 4, France
[3] Univ Toulouse, Inst Natl Polytech Toulouse, IPST Cnam, 118 Route Narbonne, F-31062 Toulouse 9, France
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 06期
关键词
Bifurcation; bifurcation curve; 2D spatiotemporal discrete system; spectrum; stability; STABILITY ANALYSIS; DISCRETE-SYSTEMS; LOGISTIC MAP; CHAOS; BEHAVIOR; MODELS; SENSE;
D O I
10.1142/S0218127421500917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we give theoretical and numerical analyses for local bifurcations of 2D spatiotemporal discrete systems of the form x(m+1, n+1) = f (x(m, n,) x(m+1,n)), where f is a real nonlinear function, m and n are two independent integer variables, representing respectively a spatial coordinate and the time. On the basis of the spectral theory, we derive the conditions under which the local bifurcations such as flip and fold occur at the fixed points for some parameter values. As a case-study, a quite complex system, 2D spatiotemporal dynamic given by two coupled logistic maps, named 2D logistic coupled maps (2D-LCM) is considered. The proposed map provides a reliable experimental and theoretical basis for identifying some cases of local bifurcations.
引用
收藏
页数:18
相关论文
共 49 条
[1]   An improved criterion for the global asymptotic stability of 2-D state-space digital filters with finite wordlength nonlinearities [J].
Agarwal, Neha ;
Kar, Haranath .
SIGNAL PROCESSING, 2014, 105 :198-206
[2]  
[Anonymous], 2003, INTRO APPL NONLINEAR, DOI DOI 10.1007/B97481
[3]  
[Anonymous], 2012, HILBERT SPACE PROBLE
[4]  
[Anonymous], 2012, Spectral theory of operators on Hilbert spaces
[5]  
[Anonymous], 2001, WORLD SCI SERIES N A
[6]  
Ausloos M, 2006, LOGISTIC MAP ROUTE C
[7]  
Berezansky Y.M., 2013, Spectral Methods in Infinite-Dimensional Analysis, V12
[8]   Stability of asynchronous two-dimensional Fornasini-Marchesini dynamical systems [J].
Bhaya, A ;
Kaszkurewicz, E ;
Su, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 332 :257-263
[9]   Stability and chaos in 2-D discrete systems [J].
Chen, GR ;
Tian, CJ ;
Shi, YM .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :637-647
[10]   Iterative learning control for spatio-temporal dynamics using Crank-Nicholson discretization [J].
Cichy, B. ;
Galkowski, K. ;
Rogers, E. .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2012, 23 (1-2) :185-208