Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables

被引:72
作者
Phachomphon, K.
Dlamini, P. [1 ]
Chaplot, V. [1 ]
机构
[1] Univ KwaZulu Natal, SBEEH, IRD, ZA-3209 Scottsville, South Africa
关键词
SOC stocks; Regional digital soil mapping; Auxiliary variables; ORGANIC-CARBON; SPATIAL VARIABILITY; STORAGE PREDICTION; INTERPOLATION; SEQUESTRATION; MATTER; INDEX;
D O I
10.1016/j.geoderma.2009.12.020
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
One of the most important challenges of digital soil mapping is the development of methods that allow the characterisation of large areas with a high-resolution. Surface soils, forming the largest pool Of terrestrial organic carbon, may be able to sequester atmospheric carbon and thus mitigate climate change. However, this remains controversial, largely due to insufficient information on SOC stocks worldwide. One reason for this is the generally limited number of available data points, especially when large areas are considered, while another reason lies on the accuracy of interpolation techniques used for SOC mapping. The study was performed in Laos, a 230,566 km(2) area mostly forested and with steep slopes, and where soil data from 2806 pits is available. Our objective was to estimate SOC stocks to a depth of 1 m over the whole country while improving regional digital soil mapping (RDSM). SOC mapping by using purely spatial approaches of ordinary kriging (OK), inverse distance weighting (IDW) and regularized spline with tension (RST) was compared with the use of additional information on relief, climate and soils through co-kriging (OCK). The generation and validation data sets were composed of 2665 and 141 data points respectively. Overall, OCK using a multiple correlation with elevation above sea level, compound topographic index, mean slope gradient, average annual rainfall, and soil clay content (R-2 = 0.42; P level<0.001) as covariate, yielded the most accurate predictions (19.7 kg C m(-2) with standard error of +/- 3.2 kg C m(-2); and 4.54 +/- 0.74 billion tons of SOC for Laos). The pure interpolation techniques were less accurate with 4.51 +/- 1.02 billion tons of SOC for OK and 4.88 +/- 0.94 billion tons of SOC for RST. Besides providing nationwide estimates of SOC stocks these results indicate that using collectively soil punctual information on SOC stocks and their interrelationships with controlling factors which are easy to gather might be an efficient way to improve RDSM. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 53 条
[1]  
*AFNOR, 1983, X31107 AFNOR, P357
[2]  
ANDERSON JM, 1993, TROPICAL SOIL FERTIL, P94
[3]  
[Anonymous], J JPN SOC HYDROL WAT
[4]  
[Anonymous], 1992, X31108 AFNOR NF, P59
[5]  
[Anonymous], 1989, Applied Geostatistics, 551.72 ISA
[6]  
[Anonymous], 1997, SOIL ORGANIC MATTER
[7]   Improving topsoil carbon storage prediction using a digital elevation model in temperate forest soils of France [J].
Arrouays, D ;
Daroussin, J ;
Kicin, JL ;
Hassika, P .
SOIL SCIENCE, 1998, 163 (02) :103-108
[8]   Total carbon and nitrogen in the soils of the world [J].
Batjes, N. H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2014, 65 (01) :10-21
[9]   Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil [J].
Batjes, NH .
BIOLOGY AND FERTILITY OF SOILS, 1998, 27 (03) :230-235
[10]  
Bernoux M, 2002, SOIL SCI SOC AM J, V66, P888, DOI 10.2136/sssaj2002.0888