Sign-Changing Subharmonic Solutions to Unforced Equations with Singular φ-Laplacian

被引:5
作者
Boscaggin, Alberto [1 ]
Garrione, Maurizio [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
来源
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS | 2013年 / 47卷
关键词
FORCED RELATIVISTIC PENDULUM; PERIODIC-SOLUTIONS; HAMILTONIAN-SYSTEMS; CURVATURE EQUATION; EXISTENCE;
D O I
10.1007/978-1-4614-7333-6_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of infinitely many subharmonic solutions ( with a precise nodal characterization) to the equation (u '/root 1-u'(2))' + g(t, u) = 0, in the unforced case g(t, 0) equivalent to 0. The proof is performed via the Poincare-Birkhoff fixed point theorem.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 15 条
[1]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[2]   EXISTENCE OF AT LEAST TWO PERIODIC SOLUTIONS OF THE FORCED RELATIVISTIC PENDULUM [J].
Bereanu, Cristian ;
Torres, Pedro J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) :2713-2719
[3]   Variational methods for nonlinear perturbations of singular φ-Laplacians [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (01) :89-111
[4]  
Bereanu C, 2010, J DYN DIFFER EQU, V22, P463, DOI 10.1007/s10884-010-9172-3
[5]   Classical and non-classical solutions of a prescribed curvature equation [J].
Bonheure, Denis ;
Habets, Patrick ;
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :208-237
[6]   SUBHARMONIC SOLUTIONS FOR NONLINEAR SECOND ORDER EQUATIONS IN PRESENCE OF LOWER AND UPPER SOLUTIONS [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (01) :89-110
[7]  
Boscaggin A, 2011, ADV NONLINEAR STUD, V11, P77
[8]   EXISTENCE AND MULTIPLICITY RESULTS FOR PERIODIC-SOLUTIONS OF SEMILINEAR DUFFING EQUATIONS [J].
DING, TR ;
IANNACCI, R ;
ZANOLIN, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :364-409
[9]  
Ding W., 1982, Acta Math. Sin., V25, P227
[10]  
Fonda A, 2012, ADV NONLINEAR STUD, V12, P395