The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes

被引:199
作者
Kleywegt, GJ
Zou, JY
Divne, C
Davies, GJ
Sinning, I
Stahlberg, J
Reinikainen, T
Srisodsuk, M
Teeri, TT
Jones, TA
机构
[1] UPPSALA UNIV, BIOMED CTR, DEPT BIOL MOL, S-75124 UPPSALA, SWEDEN
[2] UNIV YORK, DEPT CHEM, YORK YO1 5DD, N YORKSHIRE, ENGLAND
[3] VTT BIOTECHNOL & FOOD RES, FIN-02044 ESPOO, FINLAND
关键词
cellulase; cellulose; endoglucanase; protein structure; X-ray crystallography;
D O I
10.1006/jmbi.1997.1243
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose Endoglucanase I(EG I) is the major endoglucanase produced by the cellulolytic fungus Trichoderma reesei, accounting for 5 to 10% of the total amount of cellulases produced by this organism. Together with EG I from Humicola insolens and T. reesei cellobiohydrolase I (CBH I), the enzyme is classified into family 7 of the glycosyl hydrolases, and it catalyses hydrolysis with a net retention of the anomeric configuration. The structure of the catalytic core domain (residues 1 to 371) of EG I from T. reesei has been determined at 3.6 Angstrom resolution by the molecular replacement method using the structures of T. reesei CBH I and H. insolens EG I as search models. By employing the 2-fold non-crystallographic symmetry (NCS), the structure was refined successfully, despite the Limited resolution. The final model has an X-factor of 0.201 (R-free 0.258). The structure of EG I reveals an extended, open substrate-binding cleft, rather than a tunnel as found in the homologous cellobiohydrolase CBH I. This confirms the earlier proposal that the tunnel-forming loops in CBH I have been deleted in EG I, which has resulted in an open active site in EG I, enabling it to function as an endoglucanase. Comparison of the structure of EG I with several related enzymes reveals structural similarities, and differences that relate to their biological function in degrading particular substrates. A possible structural explanation of the drastically different pH profiles of T. reesei and H. insolens EG I is proposed. (C) 1997 Academic Press Limited.
引用
收藏
页码:383 / 397
页数:15
相关论文
共 73 条
  • [1] [Anonymous], ENZ NOM
  • [2] [Anonymous], 1 MAP FINAL MODEL
  • [3] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [4] PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES
    BERNSTEIN, FC
    KOETZLE, TF
    WILLIAMS, GJB
    MEYER, EF
    BRICE, MD
    RODGERS, JR
    KENNARD, O
    SHIMANOUCHI, T
    TASUMI, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) : 535 - 542
  • [5] BHIKHABHAI R, 1984, Journal of Applied Biochemistry, V6, P336
  • [6] THE ENDO-1,4-BETA-GLUCANASE-I FROM TRICHODERMA-REESEI - ACTION ON BETA-1,4-OLIGOMERS AND POLYMERS DERIVED FROM D-GLUCOSE AND D-XYLOSE
    BIELY, P
    VRSANSKA, M
    CLAEYSSENS, M
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 200 (01): : 157 - 163
  • [7] SUBSTRATE-BINDING SITE OF ENDO-1,4-BETA-XYLANASE OF THE YEAST CRYPTOCOCCUS-ALBIDUS
    BIELY, P
    KRATKY, Z
    VRSANSKA, M
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (03): : 559 - 564
  • [8] BIELY P, 1993, CELLULASES HYDROLASE, V8, P99
  • [9] FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES
    BRUNGER, AT
    [J]. NATURE, 1992, 355 (6359) : 472 - 475
  • [10] SLOW-COOLING PROTOCOLS FOR CRYSTALLOGRAPHIC REFINEMENT BY SIMULATED ANNEALING
    BRUNGER, AT
    KRUKOWSKI, A
    ERICKSON, JW
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 : 585 - 593