Temperature Measurement Based on Electron Paramagnetic Resonance of Magnetic Nanoparticles

被引:2
作者
Wang, Shuai [1 ,2 ]
Zhong, Jing [3 ]
Liu, Wenzhong [1 ,2 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Minist Educ, Belt & Rd Joint Lab Measurement & Control Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Minist Educ, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[3] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[4] Huazhong Univ Sci & Technol Shenzhen, Res Inst, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
Electron paramagnetic resonance (EPR); g-value; magnetic nanoparticle (MNP); temperature measurement; FERROMAGNETIC-RESONANCE; PARTICLES; CELLS; SPECTROSCOPY; THERMOMETRY; ANISOTROPY; FIELD;
D O I
10.1109/TIM.2022.3159914
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic nanoparticles (MNPs) have significant temperature-to-magnetization transition effect at nanoscale. Yet temperature measurement based on MNPs is currently seriously interfered by their on-site concentration. By utilizing the electron paramagnetic resonance (EPR), we report a highly sensitive temperature measurement approach independent of concentration. MNP's temperature will affect the anisotropic field and thus affecting the resonance magnetic field and g-value. Therefore, g-value can be used to characterize the temperature of MNP. Experiments show that g- value is independent of MNP's concentration. The influence of particle size and the data analysis method on temperature estimation are also studied. Finally, the optimal temperature sensitivity is achieved with 15-run MNPs, while Gaussian smoothing method allows an optimal accuracy at Fe concentration of 5 mg mL(-)(1) with a root mean squared error of 0.07 K.
引用
收藏
页数:8
相关论文
共 52 条
  • [41] The preparation of magnetic nanoparticles for applications in biomedicine
    Tartaj, P
    Morales, MD
    Veintemillas-Verdaguer, S
    González-Carreño, T
    Serna, CJ
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) : R182 - R197
  • [42] Tran D.-N., IEEE T INSTRUM MEAS, V70, P2021
  • [43] Preparation of a magnetofluorescent nano-thermometer and its targeted temperature sensing applications in living cells
    Wang, Zhuyuan
    Ma, Xueqin
    Zong, Shenfei
    Wang, Yuzhong
    Chen, Hui
    Cui, Yiping
    [J]. TALANTA, 2015, 131 : 259 - 265
  • [44] The adaptive significance of temperature-dependent sex determination in a reptile
    Warner, D. A.
    Shine, R.
    [J]. NATURE, 2008, 451 (7178) : 566 - U5
  • [45] Magnetic nanoparticle temperature estimation
    Weaver, John B.
    Rauwerdink, Adam M.
    Hansen, Eric W.
    [J]. MEDICAL PHYSICS, 2009, 36 (05) : 1822 - 1829
  • [46] Magnetic Particle Spectroscopy: A Short Review of Applications Using Magnetic Nanoparticles
    Wu, Kai
    Su, Diqing
    Saha, Renata
    Liu, Jinming
    Chugh, Vinit Kumar
    Wang, Jian-Ping
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 4972 - 4989
  • [47] Quantum Dot Nano Thermometers Reveal Heterogeneous Local Thermogenesis in Living Cells
    Yang, Jui-Ming
    Yang, Haw
    Lin, Liwei
    [J]. ACS NANO, 2011, 5 (06) : 5067 - 5071
  • [48] Iron oxide magnetic nanoparticles based low-field MR thermometry
    Zhang, Yapeng
    Guo, Silin
    Zhang, Pu
    Zhong, Jing
    Liu, Wenzhong
    [J]. NANOTECHNOLOGY, 2020, 31 (34)
  • [49] Real-time magnetic nanothermometry: The use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields
    Zhong, Jing
    Liu, Wenzhong
    Jiang, Ling
    Yang, Ming
    Morais, Paulo Cesar
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (09)
  • [50] A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles
    Zhong, Jing
    Liu, Wenzhong
    Du, Zhongzhou
    de Morais, Paulo Cesar
    Xiang, Qing
    Xie, Qingguo
    [J]. NANOTECHNOLOGY, 2012, 23 (07)