Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite

被引:51
作者
Hyoung, Jooeun [1 ]
Heo, Jongwook W. [1 ]
Hong, Seung-Tae [1 ]
机构
[1] DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
关键词
Potassium birnessite; Calcium-ion battery; Multivalent-ion battery; Post lithium-ion battery; Calcium intercalation; MANGANESE OXIDE; HIGH-PERFORMANCE; CATHODE MATERIAL; BATTERY CATHODE; CRYSTAL WATER; INTERCALATION; SODIUM; NA; HEXACYANOFERRATE; EXCHANGE;
D O I
10.1016/j.jpowsour.2018.04.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Calcium-ion intercalation-based batteries receive attention as one type of post lithium-ion battery because of their potential advantages in terms of cost and capacity. A bimessite-type manganese oxide, K0.31MnO2 center dot 0.25H(2)O, is characterized by a layered structure with interlayer distances of similar to 7 angstrom. Here, we demonstrate for the first time the electrochemical Ca2+ ion intercalation capability of K-bir, and elucidate the calcium-ion storage mechanism. A reversible electrochemical reaction is observed in cyclic voltammograms and galvanostatic cycles. The initial specific discharge capacity is 153 mAh g(-1) at 25.8 mA g(-1) (0.1 C) in a 1 M Ca(NO3)(2) aqueous electrolyte, with the average discharge voltage of 2.8 V (vs. Ca/Ca2+). X-ray diffraction, transmission electron microscopy, and elemental analyses confirm that Ca2+ ion transport is mainly responsible for the electrochemical reaction. A kinetic analysis using CVs with various scan rates indicates that the reaction mechanism can be described as a combined reaction of a surface-limited capacitance and a diffusion-controlled intercalation. In addition, 3D bond valence sum difference maps show the 2D network for conduction pathways of calcium ions in the structure. This work demonstrates that birnessite-type manganese oxide could be a potential cathode material for calcium-ion batteries.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 48 条
[1]   A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications [J].
Alfaruqi, Muhammad Hilmy ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Duong Tung Pham ;
Jo, Jeonggeun ;
Xiu, Zhiliang ;
Mathew, Vinod ;
Kim, Jaekook .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 :121-125
[2]   Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide [J].
Amatucci, GG ;
Badway, F ;
Singhal, A ;
Beaudoin, B ;
Skandan, G ;
Bowmer, T ;
Plitza, I ;
Pereira, N ;
Chapman, T ;
Jaworski, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A940-A950
[3]   Rechargeable lithium batteries and beyond: Progress, Challenges, and future directions [J].
Amine, Khalil ;
Kanno, Ryoji ;
Tzeng, Yonhua .
MRS BULLETIN, 2014, 39 (05) :395-405
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method [J].
Avdeev, Max ;
Sale, Matthew ;
Adams, Stefan ;
Rao, R. Prasada .
SOLID STATE IONICS, 2012, 225 :43-46
[6]   Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane [J].
Birkner, Nancy ;
Navrotsky, Alexandra .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (07) :E1046-E1053
[7]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[8]   Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material [J].
Cabello, Marta ;
Nacimiento, Francisco ;
Gonzalez, Jose R. ;
Ortiz, Gregorio ;
Alcantara, Ricardo ;
Lavela, Pedro ;
Perez-Vicente, Carlos ;
Tirado, Jose L. .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 67 :59-64
[9]  
Chandrabose R.S., 2017, ANGEW CHEM-GER EDIT, V129, P2955
[10]   Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation [J].
Dias, Anderson ;
Sa, Rodrigo G. ;
Spitale, Matheus C. ;
Athayde, Maycon ;
Cituinelli, Virginia S. T. .
MATERIALS RESEARCH BULLETIN, 2008, 43 (06) :1528-1538