Training low dose CT denoising network without high quality reference data

被引:22
作者
Jing, Jie [1 ]
Xia, Wenjun [1 ]
Hou, Mingzheng [1 ,2 ]
Chen, Hu [1 ]
Liu, Yan [3 ]
Zhou, Jiliu [1 ]
Zhang, Yi [1 ,4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu 610065, Peoples R China
[3] Sichuan Univ, Coll Elect Engn, Chengdu 610041, Peoples R China
[4] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
low-dose CT; computed tomography; unsupervised learning; image denoising; machine learning; RECONSTRUCTION; REDUCTION;
D O I
10.1088/1361-6560/ac5f70
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Currently, the field of low-dose CT (LDCT) denoising is dominated by supervised learning based methods, which need perfectly registered pairs of LDCT and its corresponding clean reference image (normal-dose CT). However, training without clean labels is more practically feasible and significant, since it is clinically impossible to acquire a large amount of these paired samples. In this paper, a self-supervised denoising method is proposed for LDCT imaging. Approach. The proposed method does not require any clean images. In addition, the perceptual loss is used to achieve data consistency in feature domain during the denoising process. Attention blocks used in decoding phase can help further improve the image quality. Main results. In the experiments, we validate the effectiveness of our proposed self-supervised framework and compare our method with several state-of-the-art supervised and unsupervised methods. The results show that our proposed model achieves competitive performance in both qualitative and quantitative aspects to other methods. Significance. Our framework can be directly applied to most denoising scenarios without collecting pairs of training data, which is more flexible for real clinical scenario.
引用
收藏
页数:15
相关论文
共 37 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   Convolutional Sparse Coding for Compressed Sensing CT Reconstruction [J].
Bao, Peng ;
Xia, Wenjun ;
Yang, Kang ;
Chen, Weiyan ;
Chen, Mianyi ;
Xi, Yan ;
Niu, Shanzhou ;
Zhou, Jiliu ;
Zhang, He ;
Sun, Huaiqiang ;
Wang, Zhangyang ;
Zhang, Yi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2607-2619
[4]   Iterative reconstruction methods in X-ray CT [J].
Beister, Marcel ;
Kolditz, Daniel ;
Kalender, Willi A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02) :94-108
[5]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[6]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[7]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[8]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[9]   Block matching 3D random noise filtering for absorption optical projection tomography [J].
Fumene Feruglio, P. ;
Vinegoni, C. ;
Gros, J. ;
Sbarbati, A. ;
Weissleder, R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (18) :5401-5415
[10]  
Gehring J, 2017, PR MACH LEARN RES, V70