Mechanical, electrical, and melt flow properties of polyurethane elastomer/surface-modified carbon nanotube composites

被引:24
|
作者
Tayfun, Umit [1 ]
Kanbur, Yasin [2 ]
Abaci, Ufuk [3 ]
Guney, Hasan Yuksel [4 ]
Bayramli, Erdal [1 ,4 ]
机构
[1] Middle East Tech Univ, Dept Polymer Sci & Technol, TR-06531 Ankara, Turkey
[2] Karabuk Univ, Dept Met & Mat Engn, Karabuk, Turkey
[3] Kocaeli Univ, Dept Phys, Kocaeli, Turkey
[4] Middle East Tech Univ, Dept Chem, Ankara, Turkey
关键词
Carbon nanotube; polyurethanes; elastomers; extrusion; surface modification; polymer-matrix composites; SURFACE MODIFICATION; AC CONDUCTIVITY; POLYMER; NANOCOMPOSITES; OXIDATION;
D O I
10.1177/0021998316666158
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon nanotube-reinforced polyurethane elastomer composites were prepared by melt-mixing. Nitric acid oxidation and silanization were applied to carbon nanotube surfaces to achieve better interfacial interactions with polyurethane elastomer. Tensile and hardness tests, differential scanning calorimetry, melt flow index test, dielectric measurements, and morphological studies of composites were reported. The best results were obtained for surface-modified carbon nanotubes containing composites with lower loading levels. Addition of carbon nanotubes leads to almost two-fold increase in strain and modulus compared to pristine polyurethane elastomer. Tensile strength of composites was also improved by inclusion of carbon nanotubes. However, strength values drop down with increasing carbon nanotube content. Shore hardness increased with the inclusion of modified carbon nanotube to polyurethane elastomer while pristine carbon nanotube caused remarkable decrease in hardness of polyurethane elastomer. Relatively higher melting points and slightly lower glass transition temperatures were observed for carbon nanotube-loaded composites compared to polyurethane elastomer because of plasticizing effect of carbon nanotube. Incorparation of carbon nanotube to polyurethane elastomer matrix caused reduction in melt flow index values due to formation of agglomarates, and n the contrary, surface modifications of carbon nanotube exhibited increase in melt flow index thanks to enhanced interfacial interactions between carbon nanotube and polyurethane elastomer. Significant increase in dielectric constant of composites was observed. Better dispersion of surface modified carbon nanotubes into polyurethane elastomer was also concluded from SEM micrographs of composites.
引用
收藏
页码:1987 / 1996
页数:10
相关论文
共 50 条
  • [41] Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites
    Jiang, Qian
    Wang, Xin
    Zhu, Yuntian
    Hui, David
    Qiu, Yiping
    COMPOSITES PART B-ENGINEERING, 2014, 56 : 408 - 412
  • [42] Carbon nanotube modified polyurethane elastomer toughning polyoxymethylene and the stretching orientation behavior of carbon nanotube in matrix
    Yan, Ning
    Wang, Feng
    Xia, He-Sheng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2010, 26 (01): : 47 - 50
  • [43] Enhancement of the thermal and mechanical properties of a surface-modified boron nitride-polyurethane composite
    Kim, Kiho
    Kim, Myeongjin
    Kim, Jooheon
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2014, 25 (08) : 791 - 798
  • [44] Surface-modified carbon fiber for enhanced electromagnetic interference shielding performance in thermoplastic polyurethane composites
    Yi, Dongchan
    Jeong, Gwajeong
    Park, Seong-Dae
    Yoo, Myong Jae
    Yang, Hyunseung
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2022, 4 (04):
  • [45] Mechanical Reinforcement of Thermoplastic Polyurethane Nanocomposites by Surface-Modified Nanocellulose
    Kim, Yubin
    Huh, PilHo
    Yoo, Seong Il
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2023, 224 (04)
  • [46] Electrical, rheological and electromagnetic interference shielding properties of thermoplastic polyurethane/carbon nanotube composites
    Ramoa, Silvia D. A. S.
    Barra, Guilherme M. O.
    Oliveira, Ricardo V. B.
    de Oliveira, Marcia G.
    Cossa, Mateus
    Soares, Bluma G.
    POLYMER INTERNATIONAL, 2013, 62 (10) : 1477 - 1484
  • [47] The Effect of Multiwalled Carbon Nanotube Dimensions on the Morphology, Mechanical, and Electrical Properties of Melt Mixed Polypropylene-Based Composites
    Dubnikova, Irina
    Kuvardina, Evgeniya
    Krasheninnikov, Vadim
    Lomakin, Sergey
    Tchmutin, Igor
    Kuznetsov, Sergey
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 117 (01) : 259 - 272
  • [48] Mechanical properties of plasma surface-modified calcium carbonate-polypropylene composites
    Akovali, G
    Akman, MA
    POLYMER INTERNATIONAL, 1997, 42 (02) : 195 - 202
  • [49] Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites
    Cwirzen, A.
    Habermehl-Cwirzen, K.
    Penttala, V.
    ADVANCES IN CEMENT RESEARCH, 2008, 20 (02) : 65 - 73
  • [50] Influence of different carbon nanotubes on the electrical and mechanical properties of melt mixed poly(ether sulfone)-multi walled carbon nanotube composites
    Chakraborty, Sourav
    Pionteck, Juergen
    Krause, Beate
    Banerjee, Susanta
    Voit, Brigitte
    COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (15) : 1933 - 1940