Architecture and emplacement of the Nebo-Babel gabbronorite-hosted magmatic Ni-Cu-PGE sulphide deposit, West Musgrave, Western Australia

被引:56
作者
Seat, Zoran
Beresford, Stephen W.
Grguric, Benjamin A.
Waugh, Rob S.
Hronsky, Jon M. A.
Gee, M. A. Mary
Groves, David I.
Mathison, Charter I.
机构
[1] Univ Western Australia, Sch Earth & Geog Sci, Ctr Explorat Targeting, Crawley, WA 6009, Australia
[2] BHP Billiton, Minerals Explorat, Perth, WA 6000, Australia
关键词
Nebo-Babel; Musgrave block Australia; Ni-Cu-PGE; magmatic sulphide deposit;
D O I
10.1007/s00126-007-0123-9
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Nebo-Babel Ni-Cu-platinum-group element (PGE) sulphide deposit in the West Musgrave Block, Western Australia, is the largest nickel sulphide discovery in the last 10 years. The deposit is hosted within a concentrically zoned, olivine-free, tube-like (chonolithic), gabbronorite intrusion associated with the, approximately, 1,078-Ma Giles Complex-layered intrusions in the Warakurna large igneous province. Emplaced into sulphide-free amphibolite facies orthogneiss, the fault-offset Nebo-Babel chonolith extends for 5 km and has a cross-section of 1 x 0.5 km. Igneous mineralogy, fabrics, and textures are well preserved. The lithostratigraphy includes variably textured leucogabbronorites (VLGN) that form an outer shell around mineralised gabbronorite (MGN), with barren gabbronorite (BGN) and oxide-apatite gabbronorite (OAGN) in the middle and lower parts of the chonolith. Mineral and whole-rock geochemistry indicate that the units become progressively evolved in the order: VLGN, MGN, BGN, and OAGN, and that incompatible trace-element concentrations increase downwards within the MGN and BGN. The mineralisation, which is confined to the early, more primitive units (VLGN and MGN), occurs as massive sulphide breccias and stringers and as disseminated gabbronorite-hosted sulphides. The massive sulphides were emplaced late in the intrusive sequence, have different PGE chemistry and Cu tenor to the disseminated sulphides, and have undergone sulphide fractionation. The distribution of disseminated sulphides, which are primary magmatic in origin, is related to chonolith geometry and magma flow regimes, rather than to gravitational settling. Sulfur-bearing country rocks are absent in the Nebo-Babel deposit area, and thus, local crustal S addition was unlikely to have been the major mechanism in achieving sulphide immiscibility. The Nebo-Babel intrusion is part of an originally continuous magma chonolith with multiple and related magma pulses. The parental magma was medium- to low-K tholeiite with 8-9 wt% MgO. The initial magma pulse (VLGN), the most primitive and sulphide saturated, was probably emplaced along a linear weakness in the country rock. After crystallisation of VLGN, marginally more fractionated, sulphide-saturated magma was injected through the thermally insulated core of the conduit, forming the MGN. Successive pulse(s) of more fractionated magma (BGN) were emplaced in the core of the intrusion. After magma flow ceased, closed system crystal fractionation produced consistent mineral and chemical fractionation trends within BGN and OAGN. After crystallisation, the intrusion was overturned and then offset by the Jameson Fault resulting in the apparent 'reverse' chemical and mineral trends in Nebo-Babel.
引用
收藏
页码:551 / 581
页数:31
相关论文
共 59 条
[11]   THE ORIGIN OF THE FRACTIONATION OF PLATINUM-GROUP ELEMENTS IN TERRESTRIAL MAGMAS [J].
BARNES, SJ ;
NALDRETT, AJ ;
GORTON, MP .
CHEMICAL GEOLOGY, 1985, 53 (3-4) :303-323
[12]  
Barnes SJ, 1999, Dynamic processes in magmatic ore deposits and their application in mineral exploration, P69
[13]  
Bates R.L. Jackson., 1987, GLOSSARY GEOLOGY, P788
[14]  
BROWN GM, 1957, MINERAL MAG, V31, P511
[15]   Timing and exhumation of eclogite facies shear zones, Musgrave Block, central Australia [J].
Camacho, A ;
Compston, W ;
McCulloch, M ;
McDougall, I .
JOURNAL OF METAMORPHIC GEOLOGY, 1997, 15 (06) :735-751
[16]   Intracratonic, strike-slip partitioned transpression and the formation and exhumation of eclogite facies rocks: An example from the Musgrave Block, central Australia [J].
Camacho, A ;
McDougall, I .
TECTONICS, 2000, 19 (05) :978-996
[17]  
Camacho A, 2002, GEOLOGY, V30, P887, DOI 10.1130/0091-7613(2002)030<0887:ITOATD>2.0.CO
[18]  
2
[19]  
CAMACHO A, 1995, PRECAMBRIAN RES, V71, P735
[20]   SOME PROBLEMS WITH CUMULUS THEORY [J].
CAMPBELL, IH .
LITHOS, 1978, 11 (04) :311-323