Extension of the fixed grid finite element method to eigenvalue problems

被引:9
|
作者
Maan, F. S. [1 ]
Querin, O. M. [1 ]
Barton, D. C. [1 ]
机构
[1] Univ Leeds, Sch Mech Engn, Leeds, W Yorkshire, England
关键词
fixed grid finite element analysis; FEA; eigenvalue; natural frequency; buckling;
D O I
10.1016/j.advengsoft.2006.08.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper details the development of the fixed grid FEA (FGFEA) method to the solution of eigenvalue (natural frequency and buckling) problems, using a 4 node 20 degree of freedom shell element. The formulation of the FG element stiffness, buckling and natural frequency equations is presented. The first natural frequency and buckling load are determined for the simply supported plate with a central circular void. The void is then offset to three further locations to asses the applicability of FGFEA eigenvalue analysis at reduced symmetry. A correlation trend is formed by comparison with traditional FEA results at nine increasingly refined mesh densities for each example. In addition to this, a relationship between the FGFEA error and the boundary element intersection angle with the void is formed. (C) 2006 Elsevier Ltd. and Civil-Comp Ltd. All rights reserved.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 50 条
  • [1] Immersed Finite Element Method for Eigenvalue Problems in Elasticity
    Lee, Seungwoo
    Kwak, Do Young
    Sim, Imbo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) : 424 - 444
  • [2] Quadrature finite element method for elliptic eigenvalue problems
    Solov’ev S.I.
    Lobachevskii Journal of Mathematics, 2017, 38 (5) : 856 - 863
  • [3] Modified fixed-grid finite element method in shape optimization problems based on the gradientless method
    Heshmati, M.
    Daneshmand, F.
    Amini, Y.
    SCIENTIA IRANICA, 2014, 21 (01) : 147 - 161
  • [4] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    Numerische Mathematik, 2014, 128 : 615 - 634
  • [5] A mixed finite element method for fourth order eigenvalue problems
    Nataraj, Neela
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 60 - 72
  • [6] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [7] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [8] Generalized soft finite element method for elliptic eigenvalue problems
    Chen, Jipei
    Calo, Victor M.
    Deng, Quanling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 184 : 168 - 184
  • [9] Enhancing finite element approximation for eigenvalue problems by projection method
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 81 - 91
  • [10] A multilevel finite element method for Fredholm integral eigenvalue problems
    Xie, Hehu
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 173 - 184