Magnetization Reversal in Chains and Clusters of Exchange-Coupled Nickel Nanoparticles

被引:28
作者
Agrawal, Milan
Rana, Bivas
Barman, Anjan [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Dept Mat Sci, Kolkata 700098, India
关键词
Finite element method - Magnetic logic devices - Nanomagnetics - Nickel - Nanoparticles - Chains;
D O I
10.1021/jp103003a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An ensemble of single domain magnetic nanoparticles often tends to form chains and clusters of various geometries to reduce the micromagnetic energies. The magnetic behavior is different when the nanoparticles are exchange coupled rather than physically separated and only dipolar coupled. Here, we have studied the quasistatic magnetization reversal mechanisms of chains and clusters of exchange-coupled magnetic nanoparticles by experimental and micromagnetic simulation methods. We have explained the experimental magnetic hysteresis behaviors by using the finite element method (FEM) based micromagnetic simulations. We observe that the magnetization reversals in these samples occur through the formation of various local domain states including vortices and fanning- and curling-like modes, depending upon the cluster geometry. The constituent nanoparticles reverse by the quasi-coherent rotation of magnetization, whereas the incoherence between the nanoparticles in the cluster gives rise to the observed domain structures.
引用
收藏
页码:11115 / 11118
页数:4
相关论文
共 26 条
[1]   Magnetic nanoparticles for drug delivery [J].
Arruebo, Manuel ;
Fernandez-Pacheco, Rodrigo ;
Ibarra, M. Ricardo ;
Santamaria, Jesus .
NANO TODAY, 2007, 2 (03) :22-32
[2]   Magneto-optical observation of picosecond dynamics of single nanomagnets [J].
Barman, Anjan ;
Wang, Suqin ;
Maas, Jeffrey D. ;
Hawkins, Aaron R. ;
Kwon, Sunghoon ;
Liddle, Alexander ;
Bokor, Jeffrey ;
Schmidt, Holger .
NANO LETTERS, 2006, 6 (12) :2939-2944
[3]   Overcoming the dipolar disorder in dense CoFe nanoparticle ensembles:: Superferromagnetism [J].
Bedanta, S. ;
Eimueller, T. ;
Kleemann, W. ;
Rhensius, J. ;
Stromberg, F. ;
Amaladass, E. ;
Cardoso, S. ;
Freitas, P. P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (17)
[4]   Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag [J].
Binns, C ;
Maher, MJ ;
Pankhurst, QA ;
Kechrakos, D ;
Trohidou, KN .
PHYSICAL REVIEW B, 2002, 66 (18) :1-12
[5]   Three-dimensional magnetization reversal measurements in nanoparticles [J].
Bonet, E ;
Wernsdorfer, W ;
Barbara, B ;
Benoît, A ;
Mailly, D ;
Thiaville, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4188-4191
[6]   Magnetic-field-induced assemblies of cobalt nanoparticles [J].
Cheng, GJ ;
Romero, D ;
Fraser, GT ;
Walker, ARH .
LANGMUIR, 2005, 21 (26) :12055-12059
[7]   Biological sensors based on Brownian relaxation of magnetic nanoparticles [J].
Chung, SH ;
Hoffmann, A ;
Bader, SD ;
Liu, C ;
Kay, B ;
Makowski, L ;
Chen, L .
APPLIED PHYSICS LETTERS, 2004, 85 (14) :2971-2973
[8]   MAGNETIC INTERACTION DOMAINS [J].
CRAIK, DJ ;
ISAAC, ED .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1960, 76 (487) :160-&
[9]  
Fertman V.E., 1990, MAGNETIC FLUIDS GUID
[10]   A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag [J].
Fischbacher, Thomas ;
Franchin, Matteo ;
Bordignon, Giuliano ;
Fangohr, Hans .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) :2896-2898