THE NATURAL PARTIAL ORDER ON LINEAR SEMIGROUPS WITH NULLITY AND CO-RANK BOUNDED BELOW

被引:3
作者
Chaopraknoi, Sureeporn [1 ]
Phongpattanacharoen, Teeraphong [1 ]
Prakitsri, Pongsan [1 ]
机构
[1] Chulalongkorn Univ, Dept Math & Comp Sci, Fac Sci, Bangkok 10330, Thailand
关键词
linear transformation semigroup; natural partial order; left (right) compatible element; minimal (maximal) element; TRANSFORMATION SEMIGROUPS;
D O I
10.1017/S0004972714000793
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Higgins ['The Mitsch order on a semigroup', Semigroup Forum 49 (1994), 261-266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 14 条
[1]  
[Anonymous], 1952, DOKL AKAD NAUK SSSR+, V84, P1119
[2]  
Chaopraknoi S., 2005, ITAL J PURE APPL MAT, V17, P213
[3]   THE NATURAL PARTIAL ORDER ON SOME TRANSFORMATION SEMIGROUPS [J].
Chaopraknoi, Sureeporn ;
Phongpattanacharoen, Teeraphong ;
Rawiwan, Pattanachai .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) :279-292
[4]  
Hartwig R.E., 1980, Math. Jpn., V25, P1
[5]   THE MITSCH ORDER ON A SEMIGROUP [J].
HIGGINS, PM .
SEMIGROUP FORUM, 1994, 49 (02) :261-266
[6]  
Huisheng P., 2013, COMMUN ALGEBRA, V41, P3308
[7]  
Kemprasit Y., 2002, ALGEBRAIC SEMIGROUP
[8]   Partial orders on transformation semigroups [J].
Marques-Smith, MPO ;
Sullivan, RP .
MONATSHEFTE FUR MATHEMATIK, 2003, 140 (02) :103-118
[9]   The Ideal Structure of Semigroups of Linear Transformations with Lower Bounds on Their Nullity or Defect [J].
Mendes-Goncalves, Suzana ;
Sullivan, R. P. .
ALGEBRA COLLOQUIUM, 2010, 17 (01) :109-120
[10]   A NATURAL PARTIAL ORDER FOR SEMIGROUPS [J].
MITSCH, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (03) :384-388