Kinetic Monte Carlo simulations of nanocrystalline film deposition

被引:15
|
作者
Ruan, Shiyun [1 ]
Schuh, Christopher A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SURFACE-DIFFUSION; THIN-FILMS; GRAIN-STRUCTURE; ATOMISTIC SIMULATOR; ELECTRON-MICROSCOPY; GROWTH; TEMPERATURE; EPITAXY; MODELS; MICROSTRUCTURE;
D O I
10.1063/1.3331986
中图分类号
O59 [应用物理学];
学科分类号
摘要
A full diffusion kinetic Monte Carlo algorithm is used to model nanocrystalline film deposition, and study the mechanisms of grain nucleation and microstructure formation in such films. The major finding of this work is that new grain nucleation occurs predominantly on surface peaks. Consequently, development of a nanocrystalline structure is promoted by a growth surface with nanoscale roughness, on which new grains can nucleate and grow separately from one another. The grain minor dimension (in the plane of the film) is primarily dictated by surface peak spacing, which in turn is reduced at low temperatures and high deposition rates. The grain major dimension (in the growth direction) is related to the probability of nucleating new grains on top of pre-existing ones, with finer grains being formed at low temperatures and low grain boundary energies. Because vacancies kinetically pin grain boundaries, high vacancy content, which is obtained at high deposition rate, also favors nanograins. Consistent with empirical observations common in the experimental literature, it is found that as grains shrink, they transition from elongated to equiaxed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3331986]
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Monte Carlo Methods for Reactor Kinetic Simulations
    Srivastava, Argala
    Singh, K. P.
    Degweker, S. B.
    NUCLEAR SCIENCE AND ENGINEERING, 2018, 189 (02) : 152 - 170
  • [22] Kinetic Monte Carlo simulations of FeCu alloys
    Domain, C
    Becquart, CS
    van Duysen, JC
    MICROSTRUCTURAL PROCESSES IN IRRADIATED MATERIALS, 1999, 540 : 643 - 648
  • [23] The Kinetic Monte Carlo Simulations of Proton Conductivity
    Tomasz, Maslowski
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 111 - 111
  • [24] Kinetic Monte Carlo simulations of FeCu alloys
    Domain, C
    Becquart, CS
    Van Duysen, JC
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 217 - 222
  • [25] Kinetic Monte Carlo simulations of heteroepitaxial growth
    Biehl, M
    Ahr, M
    Kinzel, W
    Much, F
    THIN SOLID FILMS, 2003, 428 (1-2) : 52 - 55
  • [26] Kinetic Monte Carlo simulations of proton conductivity
    Maslowski, T.
    Drzewinski, A.
    Ulner, J.
    Wojtkiewicz, J.
    Zdanowska-Fraczek, M.
    Nordlund, K.
    Kuronen, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [27] Monte Carlo simulations for a kinetic growth model
    Onody, RN
    Neves, UPC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20): : L527 - L531
  • [28] Hybrid asynchronous algorithm for parallel kinetic Monte Carlo simulations of thin film growth
    Shim, Y
    Amar, JG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 305 - 317
  • [29] Synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth
    Merrick, Michael
    Fichthorn, Kristen A.
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [30] Kinetic Monte Carlo simulations of Ge-Sb-Te thin film crystallization
    Portavoce, A.
    Roland, G.
    Remondina, J.
    Descoins, M.
    Bertoglio, M.
    Amalraj, M.
    Eymeoud, P.
    Dutartre, D.
    Lorut, F.
    Putero, M.
    NANOTECHNOLOGY, 2022, 33 (29)