Dirac operators on the Taub-NUT space, monopoles and SU(2) representations

被引:16
作者
Jante, Rogelio [1 ]
Schroers, Bernd J.
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Solitons Monopoles and Instantons; Differential and Algebraic Geometry; Global Symmetries; KALUZA-KLEIN MONOPOLE; WEIGHTED SPHERICAL-HARMONICS; BPS MONOPOLES; FERMION DYNAMICS; INDEX; ANOMALIES; GEOMETRY; DUALITY; VECTOR; MODELS;
D O I
10.1007/JHEP01(2014)114
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyse the normalisable zero-modes of the Dirac operator on the Taub-NUT manifold coupled to an abelian gauge field with self-dual curvature, and interpret them in terms of the zero modes of the Dirac operator on the 2-sphere coupled to a Dirac monopole. We show that the space of zero modes decomposes into a direct sum of irreducible SU(2) representations of all dimensions up to a bound determined by the spinor charge with respect to the abelian gauge group. Our decomposition provides an interpretation of an index formula due to Pope and provides a possible model for spin in recently proposed geometric models of matter.
引用
收藏
页数:34
相关论文
共 31 条
[1]  
[Anonymous], EMS SERIES LECT MATH
[2]   Geometric models of matter [J].
Atiyah, M. F. ;
Manton, N. S. ;
Schroers, B. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2141) :1252-1279
[3]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[4]   FERMION DYNAMICS IN THE KALUZA-KLEIN MONOPOLE GEOMETRY [J].
BAIS, FA ;
BATENBURG, P .
NUCLEAR PHYSICS B, 1984, 245 (03) :469-480
[5]   AXIAL ANOMALIES AND INDEX THEOREMS ON OPEN SPACES [J].
CALLIAS, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :213-234
[6]   SPECTRA OF FERMIONS IN MONOPOLE FIELDS - EXACTLY SOLUBLE MODELS [J].
CALLIAS, CJ .
PHYSICAL REVIEW D, 1977, 16 (10) :3068-3077
[7]   Fermion zero modes for abelian BPS monopoles [J].
Cheng, B. ;
Ford, C. .
PHYSICS LETTERS B, 2013, 720 (1-3) :262-264
[8]   THE DIRAC-EQUATION IN TAUB-NUT SPACE [J].
COMTET, A ;
HORVATHY, PA .
PHYSICS LETTERS B, 1995, 349 (1-2) :49-56
[9]   THE RELATIONSHIP BETWEEN MONOPOLE HARMONICS AND SPIN-WEIGHTED SPHERICAL-HARMONICS [J].
DRAY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (05) :1030-1033
[10]   A UNIFIED TREATMENT OF WIGNER DELTA-FUNCTIONS, SPIN-WEIGHTED SPHERICAL-HARMONICS, AND MONOPOLE HARMONICS [J].
DRAY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (03) :781-792