Weak KAM solutions of Hamilton-Jacobi equations with decreasing dependence on unknown functions

被引:19
作者
Wang, Kaizhi [1 ]
Wang, Lin [2 ]
Yan, Jun [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Hamilton-Jacobi equations; Viscosity solutions; Weak KAM theory;
D O I
10.1016/j.jde.2021.03.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we provide a necessary and sufficient condition of the existence of viscosity solutions of the nonlinear first order PDE F(x, u, Du) = 0, x is an element of M, under which we prove the compactness of the set of all viscosity solutions. Here, F(x, u, p) satisfies Tonelli conditions with respect to the argument p and -lambda <= partial derivative F/partial derivative u < 0 for some lambda > 0, and M is a compact manifold without boundary. Second, we study the long time behavior of viscosity solutions of the Cauchy problem for w(t) + F(x, w, w(x)) = 0, (x, t) is an element of M x (0, +infinity), from the weak KAM point of view. The dynamical methods developed in [13-15] play an essential role in this paper. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:411 / 432
页数:22
相关论文
共 17 条
[1]  
Bardi M, 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-bellman equations. Modern Birkhauser Classics, V12
[2]   An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications [J].
Barles, Guy .
HAMILTON-JACOBI EQUATIONS: APPROXIMATIONS, NUMERICAL ANALYSIS AND APPLICATIONS, CETRARO, ITALY 2011, 2013, 2074 :49-109
[3]  
Cannarsa P., 2019, TRENDS CONTROL THEOR, V32, P39
[4]   Herglotz' variational principle and Lax-Oleinik evolution [J].
Cannarsa, Piermarco ;
Cheng, Wei ;
Jin, Liang ;
Wang, Kaizhi ;
Yan, Jun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 141 :99-136
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]  
Fathi A., 2008, Weak KAM Theorem and Lagrangian Dynamics
[8]  
Ishii H., 2006, INT C MATH EUR MATH, VIII, P213
[9]  
Lions P.-L., 1982, GEN SOLUTIONS HAMILT, V69
[10]   Lagrangian flows: The dynamics of globally minimizing orbits [J].
Mañé R. .
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1997, 28 (2) :141-153