Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers

被引:35
作者
Tallaire, A. [1 ]
Lesik, M. [2 ,3 ]
Jacques, V. [2 ,3 ]
Pezzagna, S. [4 ]
Mille, V. [1 ]
Brinza, O. [1 ]
Meijer, J. [4 ]
Abel, B. [5 ]
Roch, J. F. [2 ,3 ]
Gicquel, A. [1 ]
Achard, J. [1 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, CNRS, LSPM, F-93430 Villetaneuse, France
[2] Univ Paris 11, CNRS, Lab Aime Cotton, F-91405 Orsay, France
[3] ENS Cachan, F-91405 Orsay, France
[4] Univ Leipzig, Dept Nucl Solid State Phys, D-04103 Leipzig, Germany
[5] Leibniz Inst Surface Modificat IOM, Dept Chem, D-04318 Leipzig, Germany
关键词
NV centers; Single crystal diamond; Nitrogen doping; Crystal growth; Plasma assisted chemical vapor deposition; GROWTH; DISLOCATIONS; IMPURITIES;
D O I
10.1016/j.diamond.2014.11.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we explore the ability of plasma assisted chemical vapor deposition (PACVD) operating under high power densities to produce thin high-quality diamond layers with a controlled doping with negatively-charged nitrogen-vacancy (NV-) centers. This luminescent defect possesses specific physical characteristics that make it suitable as an addressable solid-state electron spin for measuring magnetic fields with unprecedented sensitivity. To this aim, a relatively large number of NV- centers (>10(12) cm(-3)) should ideally be located in a thin diamond layer (a few tens of nm) close to the surface which is particularly challenging to achieve with the PACVD technique. Here we show that intentional temperature variations can be exploited to tune NV- creation efficiency during growth, allowing engineering complex stacking structures with a variable doping. Because such a temperature variation can be performed quickly and without any change of the gas phase composition, thin layers can be grown. Measurements show that despite the temperature variations, the luminescent centers incorporated using this technique exhibit spin coherence properties similar to those reached in ultra-pure bulk crystals, which suggests that they could be successfully employed in magnetometry applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 35 条
  • [31] Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond
    Tallaire, A.
    Barjon, J.
    Brinza, O.
    Achard, J.
    Silva, F.
    Mille, V.
    Issaoui, R.
    Tardieu, A.
    Gicquel, A.
    [J]. DIAMOND AND RELATED MATERIALS, 2011, 20 (07) : 875 - 881
  • [32] High-sensitivity diamond magnetometer with nanoscale resolution
    Taylor, J. M.
    Cappellaro, P.
    Childress, L.
    Jiang, L.
    Budker, D.
    Hemmer, P. R.
    Yacoby, A.
    Walsworth, R.
    Lukin, M. D.
    [J]. NATURE PHYSICS, 2008, 4 (10) : 810 - 816
  • [33] Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition
    Teraji, T
    Ito, T
    [J]. JOURNAL OF CRYSTAL GROWTH, 2004, 271 (3-4) : 409 - 419
  • [34] Extending spin coherence times of diamond qubits by high-temperature annealing
    Yamamoto, T.
    Umeda, T.
    Watanabe, K.
    Onoda, S.
    Markham, M. L.
    Twitchen, D. J.
    Naydenov, B.
    McGuinness, L. P.
    Teraji, T.
    Koizumi, S.
    Dolde, F.
    Fedder, H.
    Honert, J.
    Wrachtrup, J.
    Ohshima, T.
    Jelezko, F.
    Isoya, J.
    [J]. PHYSICAL REVIEW B, 2013, 88 (07):
  • [35] Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths
    Zhao, Nan
    Ho, Sai-Wah
    Liu, Ren-Bao
    [J]. PHYSICAL REVIEW B, 2012, 85 (11)