Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis

被引:158
作者
Williams, Alex H. [1 ]
Kim, Tony Hyun [2 ]
Wang, Forea [1 ]
Vyas, Saurabh [2 ,3 ]
Ryu, Stephen I. [2 ,11 ]
Shenoy, Krishna V. [2 ,3 ,6 ,7 ,8 ,9 ]
Schnitzer, Mark [4 ,5 ,7 ,9 ,10 ]
Kolda, Tamara G. [12 ]
Ganguli, Surya [4 ,6 ,7 ,8 ]
机构
[1] Stanford Univ, Neurosci Grad Program, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Bioengn Dept, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[6] Stanford Univ, Neurobiol Dept, Stanford, CA 94305 USA
[7] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[8] Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA
[9] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[10] Stanford Univ, CNC Program, Stanford, CA 94305 USA
[11] Palo Alto Med Fdn, Dept Neurosurg, Palo Alto, CA 94301 USA
[12] Sandia Natl Labs, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
LEAST-SQUARES; MATRIX FACTORIZATION; ARM MOVEMENTS; DECOMPOSITIONS; COMPLEXITY; REORGANIZATION; APPROXIMATION; PERFORMANCE; ALGORITHM; RESPONSES;
D O I
10.1016/j.neuron.2018.05.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multi-electrode recordings of macaque motor cortex during brain machine interface learning.
引用
收藏
页码:1099 / +
页数:25
相关论文
共 93 条
  • [1] Multiway analysis of epilepsy tensors
    Acar, Evrim
    Aykut-Bingol, Canan
    Bingol, Haluk
    Bro, Rasmus
    Yener, Buelent
    [J]. BIOINFORMATICS, 2007, 23 (13) : I10 - I18
  • [2] Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods
    Ahrens, Misha B.
    Linden, Jennifer F.
    Sahani, Maneesh
    [J]. JOURNAL OF NEUROSCIENCE, 2008, 28 (08) : 1929 - 1942
  • [3] Structure-seeking multilinear methods for the analysis of MRI data
    Andersen, AH
    Rayens, WS
    [J]. NEUROIMAGE, 2004, 22 (02) : 728 - 739
  • [4] [Anonymous], 1970, UCLA Working Papers in Phonetics, DOI DOI 10.1134/S0036023613040165
  • [5] [Anonymous], 2017, INFERRING SINGLE TRI, DOI DOI 10.1101/152884
  • [6] [Anonymous], 2016, ADV NEUR IN
  • [7] [Anonymous], 2011, Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
  • [8] [Anonymous], 2016, Advances in Neural Information Processing Systems
  • [9] Neural correlations, population coding and computation
    Averbeck, BB
    Latham, PE
    Pouget, A
    [J]. NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) : 358 - 366
  • [10] Bader Brett W, 2017, Matlab Tensor Toolbox