Nonparametric kernel density estimation for general groupeddata

被引:7
作者
Reyes, Miguel [1 ]
Francisco-Fernandez, Mario [1 ]
Cao, Ricardo [1 ]
机构
[1] Univ A Coruna, Fac Informat, Campus Elvina S-N, La Coruna 15071, Spain
关键词
interval data; asymptotic mean squared error; plug-in bandwidth; 62G07; 62N99;
D O I
10.1080/10485252.2016.1163348
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interval-grouped data are defined, in general, when the event of interest cannot be directly observed and it is only known to have been occurred within an interval. In this framework, a nonparametric kernel density estimator is proposed and studied. The approach is based on the classical Parzen-Rosenblatt estimator and on the generalisation of the binned kernel density estimator. The asymptotic bias and variance of the proposed estimator are derived under usual assumptions, and the effect of using non-equally spaced grouped data is analysed. Additionally, a plug-in bandwidth selector is proposed. Through a comprehensive simulation study, the behaviour of both the estimator and the plug-in bandwidth selector considering different scenarios of data grouping is shown. An application to real data confirms the simulation results, revealing the good performance of the estimator whenever data are not heavily grouped.
引用
收藏
页码:235 / 249
页数:15
相关论文
共 12 条
[1]   Multivariate Ostrowski type inequalities [J].
Anastassiou, GA .
ACTA MATHEMATICA HUNGARICA, 1997, 76 (04) :267-278
[2]   Computing statistical indices for hydrothermal times using weed emergence data [J].
Cao, R. ;
Francisco-Fernandez, M. ;
Anand, A. ;
Bastida, F. ;
Gonzalez-Andujar, J. L. .
JOURNAL OF AGRICULTURAL SCIENCE, 2011, 149 :701-712
[4]   On the accuracy of binned kernel density estimators [J].
Hall, P ;
Wand, MP .
JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 56 (02) :165-184
[5]  
Ostrowski A., 1937, Comment. Math. Helv., V10, P226, DOI [10.1007/BF01214290, DOI 10.1007/BF01214290, 10.1134/S0001434610010049, DOI 10.1134/S0001434610010049]
[6]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[7]  
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
[8]  
2
[9]   REMARKS ON SOME NONPARAMETRIC ESTIMATES OF A DENSITY-FUNCTION [J].
ROSENBLATT, M .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :832-837
[10]   KERNEL DENSITY-ESTIMATION WITH BINNED DATA [J].
SCOTT, DW ;
SHEATHER, SJ .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (06) :1353-1359