Deliberation for Intuition: A Framework for Energy-Efficient Trip Detection on Cellular Phones
被引:0
|
作者:
Jiang, Yifei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USAUniv Colorado, Dept Comp Sci, Boulder, CO 80309 USA
Jiang, Yifei
[1
]
Li, Du
论文数: 0引用数: 0
h-index: 0
机构:
Nokia Res Ctr, Palo Alto, CA USAUniv Colorado, Dept Comp Sci, Boulder, CO 80309 USA
Li, Du
[2
]
Yang, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Nokia Res Ctr, Palo Alto, CA USAUniv Colorado, Dept Comp Sci, Boulder, CO 80309 USA
Yang, Guang
[2
]
Lv, Qin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USAUniv Colorado, Dept Comp Sci, Boulder, CO 80309 USA
Lv, Qin
[1
]
Liu, Zhigang
论文数: 0引用数: 0
h-index: 0
机构:
Nokia Res Ctr, Palo Alto, CA USAUniv Colorado, Dept Comp Sci, Boulder, CO 80309 USA
Liu, Zhigang
[2
]
机构:
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[2] Nokia Res Ctr, Palo Alto, CA USA
来源:
UBICOMP'11: PROCEEDINGS OF THE 2011 ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING
|
2011年
基金:
美国国家科学基金会;
关键词:
Location Based Services;
Energy Efficiency;
Smart Phones;
GPS;
LOCATIONS;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Trip detection is a fundamental issue in many context-sensitive information services on mobile devices. It aims to automatically recognize significant places and trips between them. The key challenge is how to minimize energy consumption while maintaining high accuracy. Previous works that use GPS/WiFi sampling are accurate but energy efficiency is low and does not improve over time. Learning from the human decision making process, we propose an energy-efficient trip detection framework that consists of two modes: The deliberation mode learns cell-id patterns using GPS/WiFi based localization methods; the intuition mode only uses cell-ids and learned patterns for trip detection; transition between the two modes is controlled by parameters that are also learned. We evaluated our framework using real-life traces of six people over five months. Our experiments demonstrate that its energy consumption decreases rapidly as users' activities manifest regularity over time.