The feature generator of hard negative samples for fine-grained image recognition

被引:8
|
作者
Kim, Taehung [1 ]
Hong, Kibeom [1 ]
Byun, Hyeran [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Fine-grained image recognition; Metric learning; Hard negative sample; Feature generation; Deep neural networks;
D O I
10.1016/j.neucom.2020.10.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to solving the fine-grained image recognition is exploring more discriminative features for capturing tiny hints. In particular, the triplet objective function fits well with the fine-grained image recognition task because they capture the semantic similarity between images. However, triplet loss needs many pairs of tuples with hard negative samples, and it takes too much cost. To alleviate this problem, we propose a new framework that generates features of the hard negative samples. The proposed framework consists of three stages: learning part-wise features, enriching refined hard negative samples, and fine-grained image recognition. Our proposed method has achieved state-of-the-art performance in CUB 200-2011, Stanford Cars, FGVC-Aircraft, and DeepFashion datasets. Also, our extensive experiments demonstrate that each stage has a good effect on the final goal. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:374 / 382
页数:9
相关论文
共 50 条
  • [1] Feature Correlation Residual Network for Fine-Grained Image Recognition
    Xu, Jiazhen
    Wei, Yantao
    Deng, Wei
    IEEE ACCESS, 2020, 8 : 214322 - 214331
  • [2] Hierarchical Deep Click Feature Prediction for Fine-Grained Image Recognition
    Yu, Jun
    Tan, Min
    Zhang, Hongyuan
    Tao, Dacheng
    Rui, Yong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 563 - 578
  • [3] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [4] Fine-grained pornographic image recognition with multiple feature fusion transfer learning
    Lin, Xinnan
    Qin, Feiwei
    Peng, Yong
    Shao, Yanli
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (01) : 73 - 86
  • [5] Fine-grained pornographic image recognition with multiple feature fusion transfer learning
    Xinnan Lin
    Feiwei Qin
    Yong Peng
    Yanli Shao
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 73 - 86
  • [6] A cross-granularity feature fusion method for fine-grained image recognition
    Wu, Shan
    Hu, Jun
    Sun, Chen
    Zhong, Fujin
    Zhang, Qinghua
    Wang, Guoyin
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [7] Fine-Grained Image Recognition of Wild Mushroom Based on Multiscale Feature Guide
    Zhang Zhigang
    Yu Pengfei
    Li Haiyan
    Li Hongsong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [8] Learning to locate for fine-grained image recognition
    Chen, Jiamin
    Hu, Jianguo
    Li, Shiren
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 206
  • [9] Incremental Learning for Fine-Grained Image Recognition
    Cao, Liangliang
    Hsiao, Jenhao
    de Juan, Paloma
    Li, Yuncheng
    Thomee, Bart
    ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 363 - 366
  • [10] Feature relocation network for fine-grained image classification
    Zhao, Peng
    Li, Yi
    Tang, Baowei
    Liu, Huiting
    Yao, Sheng
    NEURAL NETWORKS, 2023, 161 : 306 - 317