Quantum electrodynamics description of localized surface plasmons at a metal nanosphere

被引:3
作者
Miwa, Kuniyuki [1 ,2 ]
Schatz, George C. [1 ]
机构
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Inst Mol Sci, Okazaki, Aichi 4448585, Japan
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; ENERGY-TRANSFER; NANOPARTICLES; FIELD; QUANTIZATION; GENERATION; PARTICLES;
D O I
10.1103/PhysRevA.103.L041501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A canonical quantization scheme for localized surface plasmons (LSPs) in a metal nanosphere is presented based on a microscopic model composed of electromagnetic fields, oscillators that describe plasmons, and a reservoir that describes excitations other than plasmons. The eigenmodes of this fully quantum electrodynamic theory show a spectrum that includes radiative depolarization and broadening, including redshifting from the quasistatic LSP modes with increasing particle size. These spectral profiles correctly match those obtained with exact classical electrodynamics (Mie theory). The present scheme provides the electric fields per plasmon in both near- and far-field regions whereby its utility in the fields of quantum plasmonics and nano-optics is demonstrated.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Modulation of evanescent focus by localized surface plasmons waveguide [J].
Gao, Xingyu ;
Gan, Xiaosong .
OPTICS EXPRESS, 2009, 17 (25) :22726-22734
[22]   Colloquium: An algebraic model of localized surface plasmons and their interactions [J].
Davis, T. J. ;
Gomez, D. E. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[23]   On localized surface plasmons of metallic tin nanoparticles in silicon [J].
Jung, Jesper ;
Pedersen, Thomas Garm ;
Sondergaard, Thomas ;
Pedersen, Kjeld ;
Larsen, Arne Nylandsted ;
Nielsen, Brian Bech .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2010, 4 (10) :292-294
[24]   Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes [J].
Tsargorodska, Anna ;
Cartron, Michael L. ;
Vasilev, Cvetelin ;
Kodali, Goutham ;
Mass, Olga A. ;
Baumberg, Jeremy J. ;
Dutton, P. Leslie ;
Hunter, C. Neil ;
Torma, Paivi ;
Leggett, Graham J. .
NANO LETTERS, 2016, 16 (11) :6850-6856
[25]   Excitation of Localized Plasmons in Metal Nanoshell and Nanotube with Dielectric Cores [J].
Ichikawa, Masakazu .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2021, 19 :88-98
[26]   Surface-enhanced Raman scattering as a probe for exotic electronic excitations induced by localized surface plasmons [J].
Minamimoto, Hiro ;
Murakoshi, Kei .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 22 :186-194
[27]   Controlling Spoof Plasmons in a Metal Grating Using Graphene Surface Plasmons [J].
Dias, Eduardo J. C. ;
Peres, N. M. R. .
ACS PHOTONICS, 2017, 4 (12) :3071-3080
[28]   Fabrication of large-area metal nanoparticle arrays by nanosphere lithography for localized surface plasmon resonance biosensors [J].
Denomme, R. C. ;
Iyer, K. ;
Kreder, M. ;
Smith, B. ;
Nieva, P. M. .
ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS IV, 2011, 7927
[29]   Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire [J].
Li, Qiang ;
Wei, Hong ;
Xu, Hongxing .
NANO LETTERS, 2015, 15 (12) :8181-8187
[30]   High-resolution biosensor based on localized surface plasmons [J].
Piliarik, Marek ;
Sipova, Hana ;
Kvasnicka, Pavel ;
Galler, Nicolle ;
Krenn, Joachim R. ;
Homola, Jiri .
OPTICS EXPRESS, 2012, 20 (01) :672-680