RGB-D BASED MULTIMODAL CONVOLUTIONAL NEURAL NETWORKS FOR SPACECRAFT RECOGNITION

被引:12
作者
AlDahoul, Nouar [1 ,2 ]
Karim, Hezerul Abdul [1 ]
Momo, Mhd Adel [1 ,2 ]
机构
[1] Multimedia Univ, Fac Engn, Cyberjaya, Malaysia
[2] Yo Vivo Corp, Manila, Philippines
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING CHALLENGES (ICIPC) | 2021年
关键词
convolutional neural network; spacecraft recognition; space situational awareness; multimodal learning;
D O I
10.1109/ICIPC53495.2021.9620192
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 22 条
[1]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[2]   Pose measurement of large non-cooperative satellite based on collaborative cameras [J].
Du, Xiaodong ;
Liang, Bin ;
Xu, Wenfu ;
Qiu, Yue .
ACTA ASTRONAUTICA, 2011, 68 (11-12) :2047-2065
[3]   RemoveDEBRIS: An in-orbit active debris removal demonstration mission [J].
Forshaw, Jason L. ;
Aglietti, Guglielmo S. ;
Navarathinam, Nimal ;
Kadhem, Haval ;
Salmon, Thierry ;
Pisseloup, Aurelien ;
Joffre, Eric ;
Chabot, Thomas ;
Retat, Ingo ;
Axthelm, Robert ;
Barraclough, Simon ;
Ratcliffe, Andrew ;
Bernal, Cesar ;
Chaumette, Francois ;
Pollini, Alexandre ;
Steyn, Willem H. .
ACTA ASTRONAUTICA, 2016, 127 :448-463
[4]  
Garcia A., 2021, ARXIV210409248
[5]  
He Kaiming, 2015, CVPR, DOI DOI 10.1109/CVPR.2016.90
[6]  
Musallam M. A., 2021, ARXIV210405978
[7]   The HST SM4 Relative Navigation Sensor System: Overview and Preliminary Testing Results from the Flight Robotics Lab [J].
Naasz, Bo J. ;
Burns, Richard D. ;
Queen, Steven Z. ;
Van Eepoel, John ;
Hannah, Joel ;
Skelton, Eugene .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2009, 57 (1-2) :457-483
[8]   Uncooperative pose estimation with a LIDAR-based system [J].
Opromolla, Roberto ;
Fasano, Giancarmine ;
Rufino, Giancarlo ;
Grassi, Michele .
ACTA ASTRONAUTICA, 2015, 110 :287-297
[9]  
Phisannupawong T, AEROSPACE
[10]  
Proença PF, 2020, IEEE INT CONF ROBOT, P6007, DOI [10.1109/icra40945.2020.9197244, 10.1109/ICRA40945.2020.9197244]