The role of the electron transport SDHC gene on lifespan and cancer

被引:29
作者
Ishii, Naoaki [1 ]
Ishii, Takamasa
Hartman, Philip S.
机构
[1] Tokai Univ, Sch Med, Dept Mol Life Sci, Isehara, Kanagawa 2591193, Japan
[2] Texas Christian Univ, Dept Biol, Ft Worth, TX 76129 USA
关键词
mitochondria; oxidative stress; SDHC; aging; cancer;
D O I
10.1016/j.mito.2006.11.012
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. It is known that oxygen is initially converted to superoxide anion (O-2(-)), one of reactive oxygen species (ROS), by electron leaked from mainly complex III in the electron transport system present in mitochondria, where it is the major endogenous source of ROS. We have shown that a mutation in a subunit, cytochrome b large subunit (SDHC), of complex II, also results in increasing O-2(-) production and therefore lead to apoptosis and precocious aging in Caenorhabditis elegans. Recently, individuals with an inherited propensity for vascularized head and neck tumors (i.e., paragangliomas) have been demonstrated to contain one of several mutations in complex II. To further explore the role of oxidative stress from mitochondria on apoptosis and cancer, we established a transgenic cell line with a point mutation at the ubiquinone binding region in the SDHC gene. As expected, this mutation increased O-2(-) production from complex II and led to excess apoptosis. Moreover, a significant fraction of the surviving cells from the apoptosis were transformed, as evidenced by increased tumor formation after injection into mice. Oxidative stress results in the damage to the cellular components including mitochondria and, therefore leads to apoptosis. Furthermore, oxidative stress must cause mutations in DNA and leads to cancer. It is suggested that oxidative stress from mitochondria play an important role of both apoptosis, which leads to precocious aging, and cancer. (c) 2006 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 42 条
[1]   Expanding insights of mitochondrial dysfunction in Parkinson's disease [J].
Abou-Sleiman, PM ;
Muqit, MMK ;
Wood, NW .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (03) :207-219
[2]   Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans [J].
Adachi, H ;
Fujiwara, Y ;
Ishii, N .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 1998, 53 (04) :B240-B244
[3]  
ATTARDI G, 1988, ANNU REV CELL BIOL, V4, P289, DOI 10.1146/annurev.cb.04.110188.001445
[4]   Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma [J].
Baysal, BE ;
Ferrell, RE ;
Willett-Brozick, JE ;
Lawrence, EC ;
Myssiorek, D ;
Bosch, A ;
van der Mey, A ;
Taschner, PEM ;
Rubinstein, WS ;
Myers, EN ;
Richard, CW ;
Cornelisse, CJ ;
Devilee, P ;
Devlin, B .
SCIENCE, 2000, 287 (5454) :848-851
[5]   HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS [J].
CHANCE, B ;
SIES, H ;
BOVERIS, A .
PHYSIOLOGICAL REVIEWS, 1979, 59 (03) :527-605
[6]   Oxidative DNA damage in human cells: The influence of antioxidants and DNA repair [J].
Collins, AR ;
Duthie, SJ ;
Fillion, L ;
Gedik, CM ;
Vaughan, N ;
Wood, SG .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1997, 25 (01) :326-331
[7]   OXYGEN RADICALS AND HUMAN-DISEASE [J].
CROSS, CE ;
HALLIWELL, B ;
BORISH, ET ;
PRYOR, WA ;
AMES, BN ;
SAUL, RL ;
MCCORD, JM ;
HARMAN, D .
ANNALS OF INTERNAL MEDICINE, 1987, 107 (04) :526-545
[8]   Mitochondria in neuromuscular disorders [J].
DiMauro, S ;
Bonilla, E ;
Davidson, M ;
Hirano, M ;
Schon, EA .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1366 (1-2) :199-210
[9]   Oxidants, oxidative stress and the biology of ageing [J].
Finkel, T ;
Holbrook, NJ .
NATURE, 2000, 408 (6809) :239-247
[10]   Mitochondria: are they the seat of senescence? [J].
Fridovich, I .
AGING CELL, 2004, 3 (01) :13-16