Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator

被引:232
作者
Garain, Samiran [1 ]
Jana, Santanu [1 ,2 ]
Sinha, Tridib Kumar [3 ]
Mandal, Dipankar [1 ]
机构
[1] Jadavpur Univ, Organ Nanopiezoelect Device Lab, Dept Phys, Kolkata 700032, India
[2] Netaji Nagar Day Coll, Dept Elect, 170-436 NSC Bose Rd, Kolkata 700092, India
[3] Indian Inst Technol, Ctr Mat Sci, Kharagpur 721302, W Bengal, India
关键词
Ce3+-doped PVDF/graphene nanofiber; piezoelectric generator; ultrasensitive; acoustic nanogenerator; mechanical energy harvester; PIEZOELECTRIC NANOGENERATORS; DIELECTRIC-CONSTANT; ENERGY-CONVERSION; GRAPHENE SHEETS; PERFORMANCE; FILM; NANOCOMPOSITE; OXIDE; GENERATOR; LIQUID;
D O I
10.1021/acsami.5b11356
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report an efficient, low-cost in situ poled fabrication strategy to construct a large area, highly sensitive, flexible pressure sensor by electrospun Ce3+ doped PVDF/graphene composite nanofibers. The entire device fabrication process is scalable and enabling to large-area integration. It can able to detect imparting pressure as low as 2 Pa with high level of sensitivity. Furthermore, Ce3+-doped PVDF/graphene nanofiber based ultrasensitive pressure sensors can also be used as an effective nanogenerator as it generating an output voltage of 11 V with a current density similar to 6 nA/cm(2) upon repetitive application of mechanical stress that could lit up 10 blue light emitting diodes (LEDs) instantaneously. Furthermore, to use it in environmental random vibrations (such as wind flow, water fall, transportation of vehicles, etc.), nanogenerator is integrated with musical vibration that exhibits to power up three blue LEDs instantly that promises as an ultrasensitive acoustic nanogenerator (ANG). The superior sensing properties in conjunction with mechanical flexibility, integrability, and robustness of nanofibers real-time monitoring of sound waves as well as detection of different type of musical vibrations. Thus, ANG promises to use as an ultrasensitive pressure sensor, mechanical energy harvester, and effective power source for portable electronic and wearable devices.
引用
收藏
页码:4532 / 4540
页数:9
相关论文
共 50 条
[1]   Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters [J].
Abolhasani, Mohammad Mahdi ;
Azimi, Sara ;
Fashandi, Hossein .
RSC ADVANCES, 2015, 5 (75) :61277-61283
[2]   The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester [J].
Adhikary, Prakriti ;
Garain, Samiran ;
Mandal, Dipankar .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (11) :7275-7281
[3]   Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride) [J].
Ahn, Yongjin ;
Lim, Jun Young ;
Hong, Soon Man ;
Lee, Jaerock ;
Ha, Jongwook ;
Choi, Hyoung Jin ;
Seo, Yongsok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (22) :11791-11799
[4]   Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation [J].
Alam, Md Mehebub ;
Ghosh, Sujoy Kumar ;
Sultana, Ayesha ;
Mandal, Dipankar .
NANOTECHNOLOGY, 2015, 26 (16)
[5]   Evaluation of piezoelectric property of reduced graphene oxide (rGO)-poly(vinylidene fluoride) nanocomposites [J].
Alamusi ;
Xue, JunMin ;
Wu, LiangKe ;
Hu, Ning ;
Qiu, Jianhui ;
Chang, Christiana ;
Atobe, Satoshi ;
Fukunaga, Hisao ;
Watanabe, Tomonori ;
Liu, YaoLu ;
Ning, HuiMing ;
Li, JinHua ;
Li, Yuan ;
Zhao, Yinghua .
NANOSCALE, 2012, 4 (22) :7250-7255
[6]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[7]   Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties [J].
Chu, Liangyong ;
Xue, Qingzhong ;
Sun, Jin ;
Xia, Fujun ;
Xing, Wei ;
Xia, Dan ;
Dong, Mingdong .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 86 :70-75
[8]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[9]   Self-Poled Transparent and Flexible UV Light-Emitting Cerium Complex PVDF Composite: A High-Performance Nanogenerator [J].
Garain, Samiran ;
Sinha, Tridib Kumar ;
Adhikary, Prakriti ;
Henkel, Karsten ;
Sen, Shrabanee ;
Ram, Shanker ;
Sinha, Chittaranjan ;
Schmeisser, Dieter ;
Mandal, Dipankar .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (02) :1298-1307
[10]   Self-poled Efficient Flexible "Ferroelectretic" Nanogenerator: A New Class of Piezoelectric Energy Harvester [J].
Ghosh, Sujoy Kumar ;
Sinha, Tridib Kumar ;
Mahanty, Biswajit ;
Mandal, Dipankar .
ENERGY TECHNOLOGY, 2015, 3 (12) :1190-1197