MULTI-SCALE FEATURE FUSION FOR HYPERSPECTRAL AND LIDAR DATA JOINT CLASSIFICATION

被引:5
作者
Zhang, Maqun [1 ,2 ]
Gao, Feng [1 ,2 ]
Dong, Junyu [1 ,2 ]
Qi, Lin [1 ,2 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Qingdao, Peoples R China
[2] Ocean Univ China, Inst Marine Dev, Qingdao, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
hyperspectral image; LiDAR; cross-modal data fusion; classification;
D O I
10.1109/IGARSS46834.2022.9884168
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
To exploit the multi-scale information to improve the feature representation, we propose a multi-scale feature fusion network for hyperspectral image (HSI) and LiDAR data joint classification. The model is comprised of three parts: feature extraction module, feature fusion module, and MSF(Multi-Scale Fusion) module. The feature fusion module integrates the multi-modal information into the two inputs by fusing attention. MSF module integrates richer semantic information by integrating multi-scale information to improve performance. Experimental results show that the proposed method is effective in multi-modal data joint classification.
引用
收藏
页码:2856 / 2859
页数:4
相关论文
共 12 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network [J].
Ghamisi, Pedram ;
Hoefle, Bernhard ;
Zhu, Xiao Xiang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) :3011-3024
[3]   Classification of Hyperspectral and LiDAR Data Using Coupled CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Ghamisi, Pedram ;
Hong, Danfeng ;
Xia, Guiyu ;
Liu, Qingshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4939-4950
[4]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[5]   MMTM: Multimodal Transfer Module for CNN Fusion [J].
Joze, Hamid Reza Vaezi ;
Shaban, Amirreza ;
Iuzzolino, Michael L. ;
Koishida, Kazuhito .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :13286-13296
[6]   Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning [J].
Khodadadzadeh, Mahdi ;
Li, Jun ;
Prasad, Saurabh ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2971-2983
[7]   A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification [J].
Li, Heng-Chao ;
Hu, Wen-Shuai ;
Li, Wei ;
Li, Jun ;
Du, Qian ;
Plaza, Antonio .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) :747-761
[8]   Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features [J].
Liao, Wenzhi ;
Pizurica, Aleksandra ;
Bellens, Rik ;
Gautama, Sidharta ;
Philips, Wilfried .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :552-556
[9]   Building Multi-Feature Fusion Refined Network for Building Extraction from High-Resolution Remote Sensing Images [J].
Ran, Shuhao ;
Gao, Xianjun ;
Yang, Yuanwei ;
Li, Shaohua ;
Zhang, Guangbin ;
Wang, Ping .
REMOTE SENSING, 2021, 13 (14)
[10]   HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Krishna, Gopal ;
Dubey, Shiv Ram ;
Chaudhuri, Bidyut B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) :277-281