Redox dynamics of Ni catalysts in CO2 reforming of methane

被引:40
|
作者
Mette, Katharina [1 ]
Kuehl, Stefanie [1 ]
Tarasov, Andrey [1 ]
Duedder, Hendrik [2 ]
Kaehler, Kevin [2 ]
Muhler, Martin [2 ]
Schloegl, Robert [1 ]
Behrens, Malte [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany
[2] Ruhr Univ Bochum, Lehrstuhl Tech Chem, D-44801 Bochum, Germany
关键词
Dry reforming of methane; Nickel; Coking; Ni; Mg; Al hydrotalcite; High temperature; Redox dynamics; NICKEL-ALUMINA CATALYSTS; CARBON-DIOXIDE; SYNTHESIS GAS; GRAPHENE; TEMPERATURES; PERFORMANCE; TECHNOLOGY; MECHANISMS; DEPOSITION; CONVERSION;
D O I
10.1016/j.cattod.2014.06.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The influence of redox dynamics of a Ni/MgAl oxide catalyst for dry reforming of methane (DRM) at high temperature was studied to correlate structural stability with catalytic activity and coking propensity. Structural aging of the catalyst was simulated by repeated temperature-programmed reduction/oxidation (TPR/TPO) cycles. Despite a very high Ni loading of 55.4 wt.%, small Ni nanoparticles of 11 nm were obtained from a hydrotalcite-like precursor with a homogeneous distribution. Redox cycling gradually changed the interaction of the active Ni phase with the oxide support resulting in a crystalline Ni/MgAl2O4-type catalyst. After cycling the average particle size increased from 11 to 21 nm - while still a large fraction of small particles was present - bringing about a decrease in Ni surface area of 72%. Interestingly, the redox dynamics and its strong structural and chemical consequences were found to have only a moderate influence on the activity in DRM at 900 degrees C, but lead to a stable attenuation of carbon formation due to a lower fraction of graphitic carbon after DRM in a fixed-bed reactor. Supplementary DRM experiments in a thermobalance revealed that coke formation as a continuous process until a carbon limit is reached and confirmed a higher coking rate for the cycled catalyst. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [31] CO2 reforming of methane over Mg-promoted Ni/SiO2 catalysts: the influence of Mg precursors and impregnation sequences
    Zhu, Jianqiang
    Peng, Xiaoxi
    Yao, Lu
    Tong, Dongmei
    Hu, Changwei
    CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (03) : 529 - 537
  • [32] A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane
    Bian, Zhoufeng
    Das, Sonali
    Wai, Ming Hui
    Hongmanorom, Plaifa
    Kawi, Sibudjing
    CHEMPHYSCHEM, 2017, 18 (22) : 3117 - 3134
  • [33] Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2
    Shen, Jing
    Reule, Allen A. C.
    Semagina, Natalia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) : 4616 - 4629
  • [34] Zeolite and clay based catalysts for CO2 reforming of methane to syngas: A review
    Hambali, Hambali Umar
    Jalil, Aishah Abdul
    Abdulrasheed, Abdulrahman A.
    Siang, Tan Ji
    Gambo, Yahya
    Umar, Ahmad Abulfathi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (72) : 30759 - 30787
  • [35] Preparation of carbon-Ni/MgO-Al2O3 composite catalysts for CO2 reforming of methane
    Jin, Lijun
    Xie, Tong
    Ma, Bingxue
    Li, Yang
    Hu, Haoquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 5047 - 5055
  • [36] RhNi nanocatalysts for the CO2 and CO2 + H2O reforming of methane
    Garcia-Dieguez, M.
    Pieta, I. S.
    Herrera, M. C.
    Larrubia, M. A.
    Alemany, L. J.
    CATALYSIS TODAY, 2011, 172 (01) : 136 - 142
  • [37] Impact of Ni/Co in perovskites as catalysts for syngas production via methane reforming with CO2
    Lugo, Claudio
    Torres, Ruben
    Guerrero, Maryuri
    Fereira, Carla
    Petit, Eliel
    Perez, Patricia
    Rondon, Jairo
    CIENCIA E INGENIERIA, 2025, 46 (01): : 133 - 142
  • [38] The Effect of ZrO2 as Different Components of Ni-Based Catalysts for CO2 Reforming of Methane and Combined Steam and CO2 Reforming of Methane on Catalytic Performance with Coke Formation
    Sumarasingha, Wassachol
    Supasitmongkol, Somsak
    Phongaksorn, Monrudee
    CATALYSTS, 2021, 11 (08)
  • [39] Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane
    San-Jose-Alonso, D.
    Juan-Juan, J.
    Illan-Gomez, M. J.
    Roman-Martinez, M. C.
    APPLIED CATALYSIS A-GENERAL, 2009, 371 (1-2) : 54 - 59
  • [40] The bulk and supported perovskite-type catalysts for the CO2 reforming of methane: The effect of ceria and magnesia
    Yadav, Pradeep Kumar
    Dahiya, Preeti
    Mandal, Tapas Kumar
    Das, Taraknath
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 140