Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems

被引:177
作者
Luo, XS [1 ]
Chen, GR
Wang, BH
Fang, JQ
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Guangxi Normal Univ, Dept Phys & Elect Sci, Guilin 541004, Peoples R China
[4] China Inst Atom Energy, Beijing 102413, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0960-0779(03)00028-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a typical route to generate chaos via period-doubling bifurcations in some nonlinear systems. In this paper, we propose a new hybrid control strategy in which state feedback and parameter perturbation are used to control the period-doubling bifurcations and to stabilize unstable periodic orbits embedded in the chaotic attractor of a discrete chaotic dynamical system. Simulation shows that the higher stable 2(n)-periodic orbit of the system can be controlled to lower stable 2(m)-periodic orbits (m < n) by this methods. Some other numerical simulations are also presented to verify the theoretical analysis. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:775 / 783
页数:9
相关论文
共 12 条
  • [1] STABILIZATION OF PERIOD-DOUBLING BIFURCATIONS AND IMPLICATIONS FOR CONTROL OF CHAOS
    ABED, EH
    WANG, HO
    CHEN, RC
    [J]. PHYSICA D, 1994, 70 (1-2): : 154 - 164
  • [2] TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS
    BRAIMAN, Y
    GOLDHIRSCH, I
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (20) : 2545 - 2548
  • [3] ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS
    CHEN, GR
    DONG, XN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09): : 591 - 601
  • [4] On time-delayed feedback control of chaotic systems
    Chen, GR
    Yu, XH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 767 - 772
  • [5] On some controllability conditions for chaotic dynamics control
    Chen, GR
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (09) : 1461 - 1470
  • [6] SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS
    LIMA, R
    PETTINI, M
    [J]. PHYSICAL REVIEW A, 1990, 41 (02): : 726 - 733
  • [7] Luo XS, 1999, ACTA PHYS SIN-OV ED, V8, P895, DOI 10.1088/1004-423X/8/12/003
  • [8] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199
  • [9] CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK
    PYRAGAS, K
    [J]. PHYSICS LETTERS A, 1992, 170 (06) : 421 - 428
  • [10] Control of chaos by nonfeedback methods in a simple electronic circuit system and the FitzHugh-Nagumo equation
    Rajasekar, S
    Murali, K
    Lakshmanan, M
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (09) : 1545 - 1558