Quadcopter UAV Control based on Input-Output Linearization and PID

被引:0
作者
Aguerrebere, J. [1 ]
Hernandez-Martinez, E. G. [1 ]
Montufar-Chavez, S. [2 ]
Tortolero-Baena, X. [3 ]
Salgado-Aguirre, M. [3 ]
Fernandez-Anaya, G. [1 ]
Ferreira-Vazquez, E. [4 ]
Flores-Godoy, J. J. [4 ]
机构
[1] Univ Iberoamer Ciudad Mexico, InIAT, Phys & Math Dept, Mexico City 01220, DF, Mexico
[2] Univ Texas San Antonio, San Antonio, TX 78249 USA
[3] Grp Tecnol Santa Fe, Mexico City 01220, DF, Mexico
[4] Univ Catolica Uruguay, Engn Dept, Nat & Exact Sci Dept, Montevideo 11600, Uruguay
来源
2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS) | 2021年
关键词
D O I
10.1109/MWSCAS47672.2021.9531674
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A dynamical model of the quadcopter UAV is obtained considering the frictional effects in the positional and rotational coordinates. Then, a two-level control strategy is designed using an input-output Linearization in combination with PID controllers. The inner loop stabilizes the pitch, roll and yaw angles, whilst the outer-loop control is related to the position control, avoiding local Linearization. A PID control gain selection is analyzed to harmonize both control loops. The performance of the control approach is shown by numerical simulations.
引用
收藏
页码:1003 / 1006
页数:4
相关论文
共 50 条
[31]   Design of a flexible manipulator controller based on input-output linearization [J].
Sun, Ying ;
Wu, Runzhi ;
Cheng, Fangxiao ;
Yu, Lan .
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, :586-+
[32]   Excitation control of the synchronous generator by means of input-output feedback linearization [J].
Kennedy, DC ;
Miller, DE ;
Quintana, VH .
CONTROL OF POWER PLANTS AND POWER SYSTEMS (SIPOWER'95), 1996, :529-534
[33]   Fuzzy learning control of nonlinear systems using input-output linearization [J].
Boukezzoula, R ;
Galichet, S ;
Foulloy, L .
1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, :2095-2100
[34]   Input-Output Feedback Linearization Control for a PWR Nuclear Power Plant [J].
Naimi, Amine ;
Deng, Jiamei ;
Sheikh-Akbari, Akbar ;
Shimjith, S. R. ;
Arul, A. John .
2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, :1415-1420
[35]   Antiwindup Input-Output Linearization Strategy for the Control of a Multistage Continuous Fermenter With Input Constraints [J].
Casenave, Celine ;
Perez, Marc ;
Dochain, Denis ;
Harmand, Jerome ;
Rapaport, Alain ;
Sablayrolles, Jean-Marie .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (03) :766-775
[36]   LINEAR DYNAMICS HIDDEN BY INPUT-OUTPUT LINEARIZATION [J].
HUNT, LR ;
VERMA, MS .
INTERNATIONAL JOURNAL OF CONTROL, 1991, 53 (03) :731-740
[37]   Algebraic conditions for linearization by input-output injection [J].
Plestan, F ;
Glumineau, A ;
Moog, CH .
SYSTEM STRUCTURE AND CONTROL 1995, 1996, :157-162
[38]   Linearization by completely generalized input-output injection [J].
Morales, VL ;
Plestan, F ;
Glumineau, A .
KYBERNETIKA, 1999, 35 (06) :793-802
[39]   INPUT-OUTPUT LINEARIZATION WITH STATE EQUIVALENCE AND DECOUPLING [J].
HA, IJ ;
LEE, SJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (11) :2269-2274
[40]   INPUT-OUTPUT LINEARIZATION OF GENERAL NONLINEAR PROCESSES [J].
HENSON, MA ;
SEBORG, DE .
AICHE JOURNAL, 1990, 36 (11) :1753-1757