Baire's category and the bang-bang property for evolution differential inclusions of contractive type

被引:4
作者
De Blasi, F. S. [1 ]
Pianigiani, G. [1 ]
机构
[1] Univ Florence, Dipartimento Matemat Decis, Florence, FI, Italy
关键词
Baire category; Banach spaces; Evolution differential inclusions; Choquet function; RELAXATION THEOREM;
D O I
10.1016/j.jmaa.2010.01.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Baire category method is employed in order to establish that the bang-bang property holds for a class of evolution differential inclusions of contractive type in reflexive and separable real Banach spaces. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:550 / 567
页数:18
相关论文
共 40 条
[1]  
[Anonymous], 1969, Lectures on Analysis
[2]  
[Anonymous], 1994, REND SEM MAT U PADOV
[3]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI
[4]   GENERALIZED BAIRE CATEGORY AND DIFFERENTIAL-INCLUSIONS IN BANACH-SPACES [J].
BRESSAN, A ;
COLOMBO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 76 (01) :135-158
[5]  
Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI DOI 10.1007/BFB0087686
[6]  
Cellina A., 1980, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl, V69, P1
[7]  
Cellina A., 2005, Rend. Semin. Mat. Univ. Politec. Torino, V63, P197
[8]  
Dacorogna B., 1999, IMPLICIT PARTIAL DIF
[9]   The baire method for the prescribed singular values problem (vol 70, pg 719, 2004) [J].
De Blasi, F. S. ;
Pianigiani, G. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :737-738
[10]   Baire's category and relaxation problems for locally Lipschitzian differential inclusions on finite and infinite time intervals [J].
De Blasi, F. S. ;
Pianigiani, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :288-301