A characterization of best φ-approximants with applications to multidimensional isotonic approximation

被引:6
作者
Mazzone, FD [1 ]
Cuenya, HH [1 ]
机构
[1] Univ Nacl Rio Cuarto, Dept Matemat, RA-5800 Rio Cuarto, Argentina
关键词
monotone best approximants; phi-approximants; phi-lattices;
D O I
10.1007/s00365-004-0575-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some properties of best monotone approximants in several variables are obtained. We prove the following abstract characterization theorem. Let (Omega, A, ) be a measurable space and let L subset of A be a sigma-lattice. If f belongs to a Musielak-Orlicz space L-phi(Omega, A, mu), then there exists a sigma-algebra A(f) subset of A such that g is a best phi-approximant to f from L-phi(L) iff g is a best phi-approximant to f from L-phi(A(f)). The sigma-algebra A(f) depends only on f. When Omega subset of R-n and L-phi(L) is the set of monotone functions in several variables, we give sufficient conditions on the geometry of Omega to obtain a uniqueness theorem. This result extends and unifies previous ones. Finally, we prove a coincidence relation between a function and its best phi-approximant. Our main results are new, even in the classical Lebesgue spaces L-p.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 16 条
[1]   Minimizing separable convex functions subject to simple chain constraints [J].
Best, MJ ;
Chakravarti, N ;
Ubhaya, VA .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :658-672
[2]   GENERALIZED RADON-NIKODYM DERIVATIVE [J].
BRUNK, HD ;
JOHANSEN, S .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (03) :585-&
[3]   MONOTONE L1-APPROXIMATION ON THE UNIT N-CUBE [J].
DARST, RB ;
HUOTARI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (03) :425-428
[4]   BEST L1-APPROXIMATION OF L1-APPROXIMATELY CONTINUOUS-FUNCTIONS ON (0,1)N BY NONDECREASING FUNCTIONS [J].
DARST, RB ;
FU, SS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (02) :262-264
[5]  
Favier S., 2001, ABSTR APPL ANAL, V6, P101
[6]  
Goffman Casper., 1961, P AM MATH SOC, V12, P116
[7]   BEST MONOTONE APPROXIMATIONS IN L1 [0, 1] [J].
HUOTARI, R ;
MEYEROWITZ, AD ;
SHEARD, M .
JOURNAL OF APPROXIMATION THEORY, 1986, 47 (01) :85-91
[9]   BEST APPROXIMANTS IN MODULAR FUNCTION-SPACES [J].
KILMER, SJ ;
KOZLOWSKI, WM ;
LEWICKI, G .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (03) :338-367
[10]   BEST APPROXIMANTS IN LPHI-SPACES [J].
LANDERS, D ;
ROGGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02) :215-237