System identification and early warning detection of thermoacoustic oscillations in a turbulent combustor using its noise-induced dynamics *

被引:34
作者
Lee, Minwoo [1 ,2 ]
Kim, Kyu Tae [2 ]
Gupta, Vikrant [3 ]
Li, Larry K. B. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
[2] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Guangdong Prov Key Lab Turbulence Res & Applicat, Shenzhen, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Thermoacoustics; Combustion instability; System identification; Low-order modeling; Nonlinear dynamics; STABILITY MARGIN; BIFURCATIONS; INSTABILITY; PREDICTION; FLAME;
D O I
10.1016/j.proci.2020.06.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
Despite significant research, self-excited thermoacoustic oscillations continue to hinder the development of lean-premixed gas turbines, making the early detection of such oscillations a key priority. We perform outputonly system identification of a turbulent lean-premixed combustor near a Hopf bifurcation using the noiseinduced dynamics generated by inherent turbulence in the fixed-point regime, prior to the Hopf point itself. We model the pressure fluctuations in the combustor with a van der Pol-type equation and its corresponding Stuart?Landau equation. We extract the drift and diffusion terms of the equivalent Fokker?Planck equation via the transitional probability density function of the pressure amplitude. We then optimize the extracted terms with the adjoint Fokker?Planck equation. Through comparisons with experimental data, we show that this approach can enable prediction of (i) the location of the Hopf point and (ii) the limit-cycle amplitude after the Hopf point. This study shows that output-only system identification can be performed on a turbulent combustor using only pre-bifurcation data, opening up new pathways to the development of early warning indicators of thermoacoustic instability in practical combustion systems. ? 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:6025 / 6033
页数:9
相关论文
共 37 条
[1]   Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation [J].
Boujo, E. ;
Noiray, N. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200)
[2]   Combustion dynamics and control: Progress and challenges [J].
Candel, S .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 (01) :1-28
[3]  
Culick F.E. C., 1992, Combustion noise and combustion instabilities in propulsion systems
[4]   Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory [J].
Domen, Shohei ;
Gotoda, Hiroshi ;
Kuriyama, Taku ;
Okuno, Yuta ;
Tachibana, Shigeru .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 :3245-3253
[5]   Extracting model equations from experimental data [J].
Friedrich, R ;
Siegert, S ;
Peinke, J ;
Lück, S ;
Siefert, M ;
Lindemann, M ;
Raethjen, J ;
Deuschl, G ;
Pfister, G .
PHYSICS LETTERS A, 2000, 271 (03) :217-222
[6]  
Harrje D.J., 1972, Report No.: NASA-SP-194
[7]   Experimental determination of the stability margin of a combustor using exhaust flow and fuel injection rate modulations [J].
Johnson, CE ;
Neumeier, Y ;
Lieuwen, TC ;
Zinn, BT .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 :757-763
[8]   Sensitivity and Nonlinearity of Thermoacoustic Oscillations [J].
Juniper, Matthew P. ;
Sujith, R. I. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 50, 2018, 50 :661-689
[9]   Coherence resonance in a thermoacoustic system [J].
Kabiraj, Lipika ;
Steinert, Richard ;
Saurabh, Aditya ;
Paschereit, Christian Oliver .
PHYSICAL REVIEW E, 2015, 92 (04)
[10]   Early Detection of Thermoacoustic Combustion Instability Using a Methodology Combining Complex Networks and Machine Learning [J].
Kobayashi, Tsubasa ;
Murayama, Shogo ;
Hachijo, Takayoshi ;
Gotoda, Hiroshi .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)