A WEIGHTED WIENER'S LEMMA FOR INTEGRAL OPERATORS WITH SCHUR-TYPE OR ESSENTIAL-SUPREMUM KERNEL DECAY CONDITIONS

被引:0
作者
Beaver, Scott [1 ]
机构
[1] Western Oregon Univ, Dept Math, Monmouth, OR 97361 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2010年 / 36卷 / 01期
关键词
Integral operators; off-diagonal decay; inverse-closedness; symmetry; MATRICES; ALGEBRAS; SPECTRUM; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In communication theory, one may encounter integral operators whose kernels' off-diagonal decay is strictly weaker than exponential. In this paper it is shown that if such an operator is invertible, the kernel of the inverse operator exhibits the same type of decay, extending the Banach *-algebraic techniques of Grochenig and Leinert in [7] to the setting of integral operators on the space of square-integrable functions. En route, symmetry of the algebras under consideration is established.
引用
收藏
页码:261 / 273
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1955, FUNCTIONAL ANAL
[2]   The noncommutative wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators [J].
Balan, Radu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) :3921-3941
[3]  
BARNES BA, 1987, J OPERAT THEOR, V18, P115
[4]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[5]  
GELFAND L, 1964, COMMUTATIVE NORMED R
[6]   Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices [J].
Gröchenig, K ;
Leinert, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) :2695-2711
[7]  
Grochenig Karlheinz, 2001, FDN TIME FREQUENCY A
[8]   SPECTRUM OF CONVOLUTION OPERATORS ON GROUPS WITH POLYNOMIAL GROWTH [J].
HULANICKI, A .
INVENTIONES MATHEMATICAE, 1972, 17 (02) :135-+
[9]   PROPERTIES OF MATRICES WELL LOCALIZED NEAR THEIR DIAGONAL AND SOME APPLICATIONS [J].
JAFFARD, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :461-476
[10]  
PYTLIK T, 1973, B ACAD POL SCI SMAP, V21, P899