Organic Bioelectronics: Materials and Biocompatibility

被引:125
作者
Feron, Krishna [1 ]
Lim, Rebecca [2 ]
Sherwood, Connor [1 ,2 ]
Keynes, Angela [2 ]
Brichta, Alan [2 ]
Dastoor, Paul C. [1 ]
机构
[1] Univ Newcastle, Ctr Organ Elect, Newcastle, NSW 2308, Australia
[2] Univ Newcastle, Ctr Brain & Mental Hlth Res, Newcastle, NSW 2308, Australia
关键词
bioelectronics; organic electronics; biocompatibility; neural interface; drug delivery; nerve cell regeneration; ELECTRICALLY CONDUCTING POLYMER; NERVE GROWTH-FACTOR; BIOMEDICAL APPLICATIONS; IN-VITRO; NEURAL INTERFACES; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) PEDOT; ELECTROACTIVE POLYMERS; SIGNAL-TRANSDUCTION; NEURITE OUTGROWTH; CELL-ADHESION;
D O I
10.3390/ijms19082382
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Organic electronic materials have been considered for a wide-range of technological applications. More recently these organic (semi)conductors (encompassing both conducting and semi-conducting organic electronic materials) have received increasing attention as materials for bioelectronic applications. Biological tissues typically comprise soft, elastic, carbon-based macromolecules and polymers, and communication in these biological systems is usually mediated via mixed electronic and ionic conduction. In contrast to hard inorganic semiconductors, whose primary charge carriers are electrons and holes, organic (semi)conductors uniquely match the mechanical and conduction properties of biotic tissue. Here, we review the biocompatibility of organic electronic materials and their implementation in bioelectronic applications.
引用
收藏
页数:21
相关论文
共 115 条
[1]   Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface [J].
Abdullaeva, Oliya S. ;
Schulz, Matthias ;
Balzer, Frank ;
Parisi, Juergen ;
Luetzen, Arne ;
Dedek, Karin ;
Schiek, Manuela .
LANGMUIR, 2016, 32 (33) :8533-8542
[2]  
Anderson J.M., 2011, BIOCOMPATIBILITY REL, V4
[3]   Organic-based tristimuli colorimeter [J].
Antognazza, M. R. ;
Scherf, U. ;
Monti, P. ;
Lanzani, G. .
APPLIED PHYSICS LETTERS, 2007, 90 (16)
[4]   Electroactive polymers for neural interfaces [J].
Asplund, Maria ;
Nyberg, Tobias ;
Inganas, Olle .
POLYMER CHEMISTRY, 2010, 1 (09) :1374-1391
[5]  
Benfenati V, 2013, NAT MATER, V12, P672, DOI [10.1038/NMAT3630, 10.1038/nmat3630]
[6]   Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion [J].
Blau, Axel .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2013, 18 (05) :481-492
[7]   A Lysinated Thiophene-Based Semiconductor as a Multifunctional Neural Bioorganic Interface [J].
Bonetti, Simone ;
Pistone, Assunta ;
Brucale, Marco ;
Karges, Saskia ;
Favaretto, Laura ;
Zambianchi, Massimo ;
Posati, Tamara ;
Sagnella, Anna ;
Caprini, Marco ;
Toffanin, Stefano ;
Zamboni, Roberto ;
Camaioni, Nadia ;
Muccini, Michele ;
Melucci, Manuela ;
Benfenati, Valentina .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (08) :1190-1202
[8]   Large-scale recording of neuronal ensembles [J].
Buzsáki, G .
NATURE NEUROSCIENCE, 2004, 7 (05) :446-451
[9]   Neural networks grown on organic semiconductors [J].
Bystrenova, Eva ;
Jelitai, Marta ;
Tonazzini, Ilaria ;
Lazar, Adina N. ;
Huth, Martin ;
Stoliar, Pablo ;
Dionigi, Chiara ;
Cacace, Marcello G. ;
Nickel, Bert ;
Madarasz, Emilia ;
Biscarini, Fabio .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (12) :1751-1756
[10]   Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina [J].
Chan, Leanne L. H. ;
Lee, Eun-Jin ;
Humayun, Mark S. ;
Weiland, James D. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 105 (06) :2687-2697