Analysis of fragmented time directionality in time series to elucidate feedbacks in climate data

被引:9
作者
Soubeyrand, Samuel [1 ]
Morris, Cindy E. [2 ]
Bigg, E. Keith
机构
[1] INRA, Biostat & Spatial Proc UR546, F-84914 Avignon, France
[2] INRA, Plant Pathol UR0407, F-84143 Montfavet, France
基金
美国国家科学基金会;
关键词
Extreme rainfall; FeedbackTS package; Kriging; Randomization test; Rainfall data; R statistical software; Time reversibility; SILVER-IODIDE;
D O I
10.1016/j.envsoft.2014.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identifying and characterizing feedbacks in environmental processes may help in improving predictions for some environmental systems. The statistical study of time series is a manner to approach these feedbacks. Here, we consider feedbacks that are induced by occasional extreme events and that locally disturb the probabilistic behavior of climate time series. For example, intense rainfalls may induce biophysical feedback processes and, consequently, influence the occurrence or intensity of daily rainfalls afterwards. In this article, we associate such eventual perturbations in time series to the concept of fragmented time directionality, and we present the R package FeedbackTS that contains a statistical exploratory toolbox for investigating fragmented time directionality. The toolbox mostly consists of simple randomization tests. The use of the package is illustrated with historical Australian rainfall data: we show the existence of feedback and identify temporal and spatial variation in feedback. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 38 条
[1]   Markov-switching autoregressive models for wind time series [J].
Ailliot, Pierre ;
Monbet, Valerie .
ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 30 :92-101
[2]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[3]  
[Anonymous], 2006, Randomization, bootstrap and Monte Carlo methods in biology
[4]  
Beare B.K., 2012, U CALIFORNIA SAN DIE
[5]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[6]  
BIGG EK, 1988, J APPL METEOROL, V27, P505, DOI 10.1175/1520-0450(1988)027<0505:PEOCSW>2.0.CO
[7]  
2
[8]  
BIGG EK, 1964, J ATMOS SCI, V21, P396, DOI 10.1175/1520-0469(1964)021<0396:TROLMO>2.0.CO
[9]  
2
[10]  
BIGG EK, 1995, J APPL METEOROL, V34, P2406, DOI 10.1175/1520-0450(1995)034<2406:TFPEOC>2.0.CO