Abstract Cauchy problems for the generalized fractional calculus

被引:21
作者
Ascione, Giacomo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Naples, Italy
关键词
Bernstein functions; Gronwall inequality; Contraction theorem; Inverse subordinator; EQUATIONS; TIMES;
D O I
10.1016/j.na.2021.112339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus on eventually non-linear abstract Cauchy problems with a generalized fractional derivative in time. First we prove a local existence and uniqueness result, then we focus on a generalized Gronwall inequality. Before addressing the inequality, we study some properties of eigenvalues and eigenfunctions of the generalized fractional derivatives. Finally, we prove some consequences of the generalized Gronwall inequality. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 37 条
  • [1] Almeida R, 2018, C NON ORD CALC ITS A, P20, DOI [10.1007/978-3-030-17344-92, DOI 10.1007/978-3-030-17344-92]
  • [2] GRONWALL INEQUALITY FOR A GENERAL CAPUTO FRACTIONAL OPERATOR
    Almeida, Ricardo
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1089 - 1105
  • [3] Applications of inverse tempered stable subordinators
    Alrawashdeh, Mahmoud S.
    Kelly, James F.
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 892 - 905
  • [4] [Anonymous], 2011, INTRO METRIC SPACES
  • [5] Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
  • [6] On a nonlinear distributed order fractional differential equation
    Atanackovic, Teodor M.
    Oparnica, Ljubica
    Pihpovic, Stevan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 590 - 608
  • [7] Fractional SIS Epidemic Models
    Balzotti, Caterina
    D'Ovidio, Mirko
    Loreti, Paola
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 18
  • [8] Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
  • [9] Bingham N. H., 1989, REGULAR VARIATION, V27
  • [10] LIMIT THEOREMS FOR OCCUPATION TIMES OF MARKOV PROCESSES
    BINGHAM, NH
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01): : 1 - &