Reconfigurable FPGA implementation of neural networks

被引:25
作者
Hajduk, Zbigniew [1 ]
机构
[1] Rzeszow Univ Technol, Ul Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
FPGA; Neural networks; HARDWARE IMPLEMENTATION;
D O I
10.1016/j.neucom.2018.04.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This brief paper presents two implementations of feed-forward artificial neural networks in FPGAs. The implementations differ in the FPGA resources requirement and calculations speed. Both implementations exercise floating point arithmetic, apply very high accuracy activation function realization, and enable easy alteration of the neural network's structure without the need of a re-implementation of the entire FPGA project. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 15 条
[1]   Low-resource hardware implementation of the hyperbolic tangent for artificial neural networks [J].
Baptista, Dario ;
Morgado-Dias, Fernando .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4) :601-607
[2]   Automatic general-purpose neural hardware generator [J].
Baptista, Fabio D. ;
Morgado-Dias, Fernando .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (01) :25-36
[3]   FTSET-a software tool for fault tolerance evaluation and improvement [J].
Dias, Fernando Morgado ;
Borralho, Rui ;
Fontes, Pedro ;
Antunes, Ana .
NEURAL COMPUTING & APPLICATIONS, 2010, 19 (05) :701-712
[4]   A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function [J].
Ferreira, Pedro ;
Ribeiro, Pedro ;
Antunes, Ana ;
Dias, Fernando Morgado .
NEUROCOMPUTING, 2007, 71 (1-3) :71-77
[5]   High accuracy FPGA activation function implementation for neural networks [J].
Hajduk, Zbigniew .
NEUROCOMPUTING, 2017, 247 :59-61
[6]   Architecture of FPGA Embedded Multiprocessor Programmable Controller [J].
Hajduk, Zbigniew ;
Trybus, Bartosz ;
Sadolewski, Jan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (05) :2952-2961
[7]  
Kluska J, 2013, LECT NOTES ARTIF INT, V7894, P282, DOI 10.1007/978-3-642-38658-9_26
[8]   Artificial neural networks in hardware A survey of two decades of progress [J].
Misra, Janardari ;
Saha, Indranil .
NEUROCOMPUTING, 2010, 74 (1-3) :239-255
[9]   Hardware implementation of evolvable block-based neural networks utilizing a cost efficient sigmoid-like activation function [J].
Nambiar, Vishnu P. ;
Khalil-Hani, Mohamed ;
Sahnoun, Riadh ;
Marsono, M. N. .
NEUROCOMPUTING, 2014, 140 :228-241
[10]   A new solution to the hyperbolic tangent implementation in hardware: polynomial modeling of the fractional exponential part [J].
Nascimento, Ivo ;
Jardim, Ricardo ;
Morgado-Dias, Fernando .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (02) :363-369