On the pronormality of subgroups of odd index in finite simple symplectic groups

被引:11
作者
Kondrat'ev, A. S. [1 ]
Maslova, N. V. [1 ]
Revin, D. O. [2 ,3 ]
机构
[1] Ural Fed Univ, Krasovskii Inst Math & Mech, Ekaterinburg, Russia
[2] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, Russia
[3] Univ Sci & Technol China, Dept Math, Hefei, Peoples R China
关键词
finite group; simple group; symplectic group; pronormal subgroup; odd index;
D O I
10.1134/S0037446617030107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is pronormal if the subgroups H and H (g) are conjugate in aOE (c) H,H (g) > for every g a G. It was conjectured in [1] that a subgroup of a finite simple group having odd index is always pronormal. Recently the authors [2] verified this conjecture for all finite simple groups other than PSL (n) (q), PSU (n) (q), E (6)(q), (2) E (6)(q), where in all cases q is odd and n is not a power of 2, and P Sp(2n) (q), where q ae<inverted exclamation> +/- 3 (mod 8). However in [3] the authors proved that when q ae<inverted exclamation> +/- 3 (mod 8) and n ae<inverted exclamation> 0 (mod 3), the simple symplectic group P Sp(2n) (q) has a nonpronormal subgroup of odd index, thereby refuted the conjecture on pronormality of subgroups of odd index in finite simple groups. The natural extension of this conjecture is the problem of classifying finite nonabelian simple groups in which every subgroup of odd index is pronormal. In this paper we continue to study this problem for the simple symplectic groups P Sp(2n) (q) with q ae<inverted exclamation> +/- 3 (mod 8) (if the last condition is not satisfied, then subgroups of odd index are pronormal). We prove that whenever n is not of the form 2 (m) or 2 (m) (2(2k) +1), this group has a nonpronormal subgroup of odd index. If n = 2 (m) , then we show that all subgroups of P Sp(2n) (q) of odd index are pronormal. The question of pronormality of subgroups of odd index in P Sp(2n) (q) is still open when n = 2 (m) (2(2k) + 1) and q ae<inverted exclamation> +/- 3 (mod 8).
引用
收藏
页码:467 / 475
页数:9
相关论文
共 12 条
[1]  
Carter R., 1964, J. Algebra, V1, P139, DOI [10.1016/0021-8693(64)90030-4, DOI 10.1016/0021-8693(64)90030-4]
[2]  
Conway J. H., 1985, MATHBB ATLAS FINITE
[3]  
Huppert B., 1967, Grund. Math. Wiss., V134
[4]  
Isaacs I.M., 2008, AM MATH SOC
[5]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[6]  
Kleidman P. B., 1990, LMS Lecture Note Series, V129
[7]   A Pronormality Criterion for Supplements to Abelian Normal Subgroups [J].
Kondrat'ev, A. S. ;
Maslova, N. V. ;
Revin, D. O. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) :S145-S150
[8]   On the pronormality of subgroups of odd index in finite simple groups [J].
Kondrat'ev, A. S. ;
Maslova, N. V. ;
Revin, D. O. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :1101-1107
[9]   Normalizers of the Sylow 2-subgroups in finite simple groups [J].
Kondrat'ev, AS .
MATHEMATICAL NOTES, 2005, 78 (3-4) :338-346
[10]   Classification of Maximal Subgroups of Odd Index in Finite Simple Classical Groups [J].
Maslova, N. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 :S164-S183