Kinetics and mechanism of dimethyl ether oxidation to formaldehyde on supported molybdenum oxide domains

被引:27
作者
Cheung, P [1 ]
Liu, HC [1 ]
Iglesia, E [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1021/jp0477405
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetic isotope effect and isotopic tracer/exchange methods were combined with in situ infrared spectroscopy and kinetic data to determine the mechanism of dimethyl ether (DME, CH3OCH3) oxidation to formaldehyde (HCHO) on MoOx/Al2O3. The reaction intermediates and elementary steps established a redox mechanism that led to kinetic rate equations that are consistent with observed dependencies of reactant pressures. Methoxide concentrations as detected by in situ infrared spectroscopy correlated directly with formation rates to establish their importance for the formation of HCHO and CH3OH. Reactant partial pressure studies showed that rates of HCHO and CH3OH formation are first-order in DME and zero-order in O-2 at low DME pressures. At high DME pressures, rates became independent of DME pressure and acquired positive-order O-2 dependencies. H-D kinetic isotope effects indicated that C-H bond activation is not involved in kinetically relevant steps and transient studies involving (CH3OCH3)-O-16-O-18,-(MOOx)-O-16/Al2O3 confirmed the kinetic relevance of DME dissociative adsorption, the step that precedes C-H bond activation. These studies also indicated that mechanisms for HCHO formation do not discriminate between methoxide species formed from DME oxygen and those formed from lattice oxygen. Transient studies with (CH3OCH3)-O-16-O-16(2)-O-18(2)-(MoOx)-O-16/Al2O3 did not lead to detectable O-16-O-18 levels, indicating that vacancy reoxidation is irreversible.
引用
收藏
页码:18650 / 18658
页数:9
相关论文
共 39 条
[1]   Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts [J].
Argyle, MD ;
Chen, KD ;
Bell, AT ;
Iglesia, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (21) :5421-5427
[2]  
BARGER PT, 1991, Patent No. 5248647
[3]   Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts - I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts [J].
Briand, LE ;
Farneth, WE ;
Wachs, IE .
CATALYSIS TODAY, 2000, 62 (2-3) :219-229
[4]  
Brown S. H., 2003, U.S. Patent, Patent No. [6,613,951, 6613951]
[5]  
BROWN SH, 2003, Patent No. 6538167
[6]   The origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation [J].
Burcham, LJ ;
Wachs, IE .
CATALYSIS TODAY, 1999, 49 (04) :467-484
[7]   Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 2. Bulk metal oxide catalysts [J].
Burcham, LJ ;
Briand, LE ;
Wachs, IE .
LANGMUIR, 2001, 17 (20) :6175-6184
[8]   The origin of the ligand effect in metal oxide catalysts:: Novel fixed-bed in situ infrared and kinetic studies during methanol oxidation [J].
Burcham, LJ ;
Badlani, M ;
Wachs, IE .
JOURNAL OF CATALYSIS, 2001, 203 (01) :104-121
[9]   Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium [J].
Campbell, SM ;
Jiang, XZ ;
Howe, RF .
MICROPOROUS AND MESOPOROUS MATERIALS, 1999, 29 (1-2) :91-108
[10]   Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3 [J].
Chen, K ;
Xie, S ;
Bell, AT ;
Iglesia, E .
JOURNAL OF CATALYSIS, 2001, 198 (02) :232-242