Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array

被引:101
作者
Tang, Y. L. [1 ]
Zhu, Y. L. [1 ]
Liu, Y. [1 ]
Wang, Y. J. [1 ]
Ma, X. L. [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Wenhua Rd 72, Shenyang 110016, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Langongping Rd 287, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
CHARGE SEPARATION; FERROELECTRICITY; ENHANCEMENT; SYMMETRY; DOMAINS;
D O I
10.1038/ncomms15994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although elastic strains, particularly inhomogeneous strains, are able to tune, enhance or create novel properties of some nanoscale functional materials, potential devices dominated by inhomogeneous strains have not been achieved so far. Here we report a fabrication of inhomogeneous strains with a linear gradient as giant as 106 per metre, featuring an extremely lower elastic energy cost compared with a uniformly strained state. The present strain gradient, resulting from the disclinations in the BiFeO3 nanostructures array grown on LaAlO3 substrates via a high deposition flux, induces a polarization of several microcoulomb per square centimetre. It leads to a large built-in electric field of several megavoltage per metre, and gives rise to a large enhancement of solar absorption. Our results indicate that it is possible to build up large-scale strain-dominated nanostructures with exotic properties, which in turn could be useful in the development of novel devices for electromechanical and photoelectric applications.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Can interface dislocations degrade ferroelectric properties? [J].
Alpay, SP ;
Misirlioglu, IB ;
Nagarajan, V ;
Ramesh, R .
APPLIED PHYSICS LETTERS, 2004, 85 (11) :2044-2046
[2]   Direct Evidence for Cation Non-Stoichiometry and Cottrell Atmospheres Around Dislocation Cores in Functional Oxide Interfaces [J].
Arredondo, Miryam ;
Ramasse, Quentin M. ;
Weyland, Matthew ;
Mahjoub, Reza ;
Vrejoiu, Ionela ;
Hesse, Dietrich ;
Browning, Nigel D. ;
Alexe, Mann ;
Munroe, Paul ;
Nagarajan, Valanoor .
ADVANCED MATERIALS, 2010, 22 (22) :2430-+
[3]   Strain scaling for CMOS [J].
Bedell, S. W. ;
Rooz, A. Khakifi ;
Sadana, D. K. .
MRS BULLETIN, 2014, 39 (02) :131-137
[4]  
Beer F.P., 2012, MECH MATER, V6th, P226
[5]  
Bhaskar UK, 2016, NAT NANOTECHNOL, V11, P263, DOI [10.1038/nnano.2015.260, 10.1038/NNANO.2015.260]
[6]  
Biancoli A, 2015, NAT MATER, V14, P224, DOI [10.1038/nmat4139, 10.1038/NMAT4139]
[7]  
Cao J, 2009, NAT NANOTECHNOL, V4, P732, DOI [10.1038/NNANO.2009.266, 10.1038/nnano.2009.266]
[8]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[9]  
Catalan G, 2011, NAT MATER, V10, P963, DOI [10.1038/nmat3141, 10.1038/NMAT3141]
[10]   Physics and Applications of Bismuth Ferrite [J].
Catalan, Gustau ;
Scott, James F. .
ADVANCED MATERIALS, 2009, 21 (24) :2463-2485