Natural rubber nanocomposites: effect of carbon black/multi-walled carbon nanotubes hybrid fillers on the mechanical properties and thermal conductivity

被引:30
作者
Shahamatifard, F. [1 ,2 ]
Rodrigue, D. [1 ,2 ]
Park, K. W. [3 ]
Frikha, S. [3 ]
Mighri, F. [1 ,2 ]
机构
[1] CREPEC, Res Ctr High Performance Polymer & Composite Syst, Quebec City, PQ, Canada
[2] Laval Univ, Dept Chem Engn, Quebec City, PQ G1V 0A6, Canada
[3] CAMSO, Magog, PQ, Canada
来源
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS | 2021年 / 60卷 / 15期
基金
加拿大自然科学与工程研究理事会;
关键词
Natural rubber; carbon black; multi-walled carbon nanotube; hybrid fillers; thermal conductivity; mechanical properties; STRAIN-INDUCED CRYSTALLIZATION; SOLUTION-STYRENE-BUTADIENE; REINFORCING FILLERS; NETWORK STRUCTURE; BLACK; COMPOSITES; BEHAVIOR; POLYMER;
D O I
10.1080/25740881.2021.1930044
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This work presents the effect of carbon black (CB)/multiwall carbon nanotubes (MWCNT) hybrid filler system on the mechanical properties and thermal conductivity of natural rubber (NR) based nanocomposites. A 30 phr (parts per hundred of rubber) of CB nanocomposite was used as a reference for which various amounts (0.5, 1, 2 and 5 phr) of MWCNT were incorporated as a CB replacement. Scanning electron microscopy (SEM) was used to investigate the state of dispersion of the CB/MWCNT fillers inside the NR matrix, while dynamic mechanical analysis (DMA) was performed to characterize their storage and loss moduli, Payne effect and loss factor (tan delta). The scorch time (t(10)) and optimum curing time (t(90)) gradually increased with increasing MWCNT content due to the shape difference between CB and MWCNT, as well as the adsorption of curatives onto the MWCNT. Finally, due to the intrinsic properties of MWCNT and its synergy with CB, substantial improvements in thermal conductivity and mechanical properties were achieved by the substitution of 5 phr CB with MWCNT. For example, a thermal conductivity of 0.602 W/m(.)K was achieved, which corresponds to a 80% increase compared to the reference sample. Furthermore, a 72% and 54% increase of the modulus at 100% and 300% strain (M100 and M300) was respectively achieved, while the elongation at break decreased by only 20%.
引用
收藏
页码:1686 / 1696
页数:11
相关论文
共 59 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]   Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers [J].
Bokobza, Liliane ;
Rahmani, Mostafa ;
Belin, Colette ;
Bruneel, Jean-Luc ;
El Bounia, Nour-Eddine .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2008, 46 (18) :1939-1951
[3]   Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration [J].
Borges, Felipe Azevedo ;
de Barros, Natan Roberto ;
Garms, Bruna Cambraia ;
Romeiro Miranda, Matheus Carlos ;
Padua Gemeinder, Jose Lucio ;
Ribeiro-Paes, Joao Tadeu ;
Silva, Rodrigo Ferreira ;
de Toledo, Karina Alves ;
Herculano, Rondinelli Donizetti .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (39)
[4]   Effect of novel supported vulcanizing agent on the interfacial interaction and strain-induced crystallization properties of natural rubber nanocomposites [J].
Chen, Lijuan ;
Guo, Xiaohui ;
Luo, Yuanfang ;
Jia, Zhixin ;
Bai, Jie ;
Chen, Yongjun ;
Jia, Demin .
POLYMER, 2018, 148 :390-399
[5]   Effect of Coal Gangue/Carbon Black/Multiwall Carbon Nanotubes Hybrid Fillers on the Properties of Natural Rubber Composites [J].
Chen, Shuping ;
Chen, Jing ;
Xu, Kui ;
Pan, Rongkan ;
Peng, Zheng ;
Ma, Lin ;
Wu, Sichao .
POLYMER COMPOSITES, 2016, 37 (10) :3083-3092
[6]   Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J].
Choi, ES ;
Brooks, JS ;
Eaton, DL ;
Al-Haik, MS ;
Hussaini, MY ;
Garmestani, H ;
Li, D ;
Dahmen, K .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) :6034-6039
[7]   Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends [J].
Das, A. ;
Stoeckelhuber, K. W. ;
Jurk, R. ;
Saphiannikova, M. ;
Fritzsche, J. ;
Lorenz, H. ;
Klueppel, M. ;
Heinrich, G. .
POLYMER, 2008, 49 (24) :5276-5283
[8]   Carbon nanotubes as reinforcement of styrene-butadiene rubber [J].
De Falco, Alejandro ;
Goyanes, Silvia ;
Rubiolo, Gerardo H. ;
Mondragon, Inaki ;
Marzocca, Angel .
APPLIED SURFACE SCIENCE, 2007, 254 (01) :262-265
[9]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[10]  
Fei Zhao, 2011, Journal of Macromolecular Science - Physics, V50, P398, DOI 10.1080/00222341003772282