Analysis of multi-unit variance components models with state space profiles

被引:2
作者
Tsimikas, JV
Ledolter, J
机构
[1] Harvard Univ, Sch Med, Dept Hlth Care Policy, Boston, MA 02115 USA
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
关键词
continuous-time stochastic models; EM algorithm; Kalman Filter; mixed model prediction; restricted maximum likelihood; smoothing splines; unequally spaced observations; variance components;
D O I
10.1023/A:1003405615641
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We apply the Kalman Filter to the analysis of multi-unit variance components models where each unit's response profile follows a state space model. We use mixed model results to obtain estimates of unit-specific random effects, state disturbance terms and residual noise terms. We use the signal extraction approach to smooth individual profiles. We show how to utilize the Kalman Filter to efficiently compute the restricted loglikelihood of the model. For the important special case where each unit's response profile follows a continuous structural time series model with known transition matrix we derive an EM algorithm for the restricted maximum likelihood (REML) estimation of the variance components. We present details for the case where individual profiles are modeled as local polynomial trends or polynomial smoothing splines.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 22 条
[1]   SMOOTHING SPLINES FOR LONGITUDINAL DATA [J].
ANDERSON, SJ ;
JONES, RH .
STATISTICS IN MEDICINE, 1995, 14 (11) :1235-1248
[2]  
Ansley C.F., 1990, J TIME SER ANAL, V11, P275, DOI [10.1111/j.1467-9892.1990.tb00058.x, DOI 10.1111/J.1467-9892.1990.TB00058.X]
[3]   ESTIMATION, FILTERING, AND SMOOTHING IN STATE-SPACE MODELS WITH INCOMPLETELY SPECIFIED INITIAL CONDITIONS [J].
ANSLEY, CF ;
KOHN, R .
ANNALS OF STATISTICS, 1985, 13 (04) :1286-1316
[4]   SMOOTHING AND INTERPOLATION WITH THE STATE-SPACE MODEL [J].
DEJONG, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1085-1088
[5]  
DEJONG P, 1991, ANN STAT, V19, P1073
[6]   A CROSS-VALIDATION FILTER FOR TIME-SERIES MODELS [J].
DEJONG, P .
BIOMETRIKA, 1988, 75 (03) :594-600
[7]   COVARIANCES FOR SMOOTHED ESTIMATES IN STATE-SPACE MODELS [J].
DEJONG, P ;
MACKINNON, MJ .
BIOMETRIKA, 1988, 75 (03) :601-602
[8]   MAXIMUM-LIKELIHOOD ESTIMATION FOR MIXED ANALYSIS OF VARIANCE MODEL [J].
HARTLEY, HO ;
RAO, JNK .
BIOMETRIKA, 1967, 54 :93-&
[9]  
Harvey A.C., 1989, Forecasting, Structural Time Series Models and the Kalman Filter
[10]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796