Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis

被引:23
作者
Bialkowska, Aneta M. [1 ]
Jedrzejczak-Krzepkowska, Marzena [1 ]
Gromek, Ewa [1 ]
Krysiak, Joanna [1 ]
Sikora, Barbara [1 ]
Kalinowska, Halina [1 ]
Kubik, Celina [1 ]
Schuett, Fokko [2 ]
Turkiewicz, Marianna [1 ]
机构
[1] Lodz Univ Technol, Inst Tech Biochem, Stefanowskiego St 4-10, PL-90924 Lodz, Poland
[2] Thunen Inst Wood Res, Leuschnerstr 91, D-21031 Hamburg, Germany
关键词
2,3-Butanediol; Fermentation; B; subtilis; Vitreoscilla stercoraria hemoglobin (vhb); Acetoin reductase/2,3-butanediol dehydrogenase (bdhA); ENHANCED PRODUCTION; ENTEROBACTER-AEROGENES; MICROBIAL-PRODUCTION; IMPROVES; GLUCOSE; MESO-2,3-BUTANEDIOL; HYDROLYSATE; EXPRESSION; GLYCEROL; ACETOIN;
D O I
10.1007/s00253-015-7164-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Two recombinants of alkaliphilic Bacillus subtilis LOCK 1086, constructed via different strategies such as cloning the gene encoding bacterial hemoglobin from Vitreoscilla stercoraria (vhb) and overexpression of the gene encoding acetoin reductase/2,3-butanediol dehydrogenase (bdhA) from B. subtilis LOCK 1086, did not produce more 2,3-butanediol (2,3-BD) than the parental strain. In batch fermentations, this strain synthesized 9.46 g/L in 24 h and 12.80 g/L 2,3-BD in 46 h from sugar beet molasses and an apple pomace hydrolysate, respectively. 2,3-BD production by B. subtilis LOCK 1086 was significantly enhanced in fed-batch fermentations. The highest 2,3-BD concentration (75.73 g/L in 114 h, productivity of 0.66 g/L x h) was obtained in the sugar beet molasses-based medium with four feedings with glucose. In a medium based on the apple pomace hydrolysate with three feedings with sucrose, B. subtilis LOCK 1086 produced up to 51.53 g/L 2,3-BD (in 120 h, productivity of 0.43 g/L x h).
引用
收藏
页码:2663 / 2676
页数:14
相关论文
共 38 条
[1]  
ALAM S, 1990, J CHEM TECHNOL BIOT, V47, P71
[2]   IMPROVED COLOR REAGENT FOR DETERMINATION OF BLOOD-GLUCOSE BY OXIDASE SYSTEM [J].
BARHAM, D ;
TRINDER, P .
ANALYST, 1972, 97 (1151) :142-&
[3]   Enhanced production of 2,3-butanediol by engineered Bacillus subtilis [J].
Biswas, Ranjita ;
Yamaoka, Masaru ;
Nakayama, Hideki ;
Kondo, Takashi ;
Yoshida, Ken-ichi ;
Bisaria, Virendra S. ;
Kondo, Akihiko .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 94 (03) :651-658
[4]  
Budslawski J, 1972, FOOD ANAL METHODS
[5]   Biotechnological production of 2,3-butanediol-Current state and prospects [J].
Celinska, E. ;
Grajek, W. .
BIOTECHNOLOGY ADVANCES, 2009, 27 (06) :715-725
[6]   Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca [J].
Cheng, Ke-Ke ;
Liu, Qing ;
Zhang, Jian-An ;
Li, Jin-Ping ;
Xu, Jing-Ming ;
Wang, Ge-Hua .
PROCESS BIOCHEMISTRY, 2010, 45 (04) :613-616
[7]   Enhanced Production of 2,3-Butanediol from Sugarcane Molasses [J].
Dai, Jian-Ying ;
Zhao, Pan ;
Cheng, Xiao-Long ;
Xiu, Zhi-Long .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 175 (06) :3014-3024
[8]   Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol [J].
Gao, Jian ;
Xu, Hong ;
Li, Qiu-jie ;
Feng, Xiao-hai ;
Li, Sha .
BIORESOURCE TECHNOLOGY, 2010, 101 (18) :7076-7082
[9]   Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene [J].
Geckil, H ;
Barak, Z ;
Chipman, DM ;
Erenler, SO ;
Webster, DA ;
Stark, BC .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2004, 26 (05) :325-330
[10]   Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain [J].
Guo, Xuewu ;
Cao, Chunhong ;
Wang, Yazhou ;
Li, Chaoqun ;
Wu, Mingyue ;
Chen, Yefu ;
Zhang, Cuiying ;
Pei, Huadong ;
Xiao, Dongguang .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7