Sensitivity analysis for a new class of generalized parametric nonlinear ordered variational inequality problems in ordered Banach spaces

被引:1
作者
Nisar, Kottakkaran Sooppy [1 ]
Sarfaraz, Mohd. [2 ]
Morsy, Ahmed [1 ]
Ahmad, Md. Kalimuddin [2 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
关键词
Sensitivity analysis; Variational inequality; Parametric; Ordered Banach spaces; Restricted-accretive;
D O I
10.1186/s13660-019-2200-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce a class of new generalized parametric nonlinear ordered variational inequality problems and discuss its existence result. Also, we prove the sensitivity of the solution for the parametric inequality class with the help of B-restricted-accretive method in ordered Banach spaces. Some special cases of the main results are also discussed.
引用
收藏
页数:10
相关论文
共 18 条
  • [1] Adly S., 2018, ARXIV170708512, P1
  • [2] Sensitivity analysis for strongly nonlinear quasi-variational inclusions
    Agarwal, RP
    Cho, YJ
    Huang, NJ
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 19 - 24
  • [3] [Anonymous], 1972, J. Funct. Anal, DOI DOI 10.1016/0022-1236(72)90074-2
  • [4] [Anonymous], 2003, Journal of Inequalities in Pure and Applied Mathematics
  • [5] Baiocchi C., 1984, VARIATIONAL QUASI VA
  • [6] Calrke F.H., 1998, NONSMOOTH ANAL CONTR
  • [7] SENSITIVITY ANALYSIS IN VARIATIONAL-INEQUALITIES
    DAFERMOS, S
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (03) : 421 - 434
  • [8] Du Y., 1990, APPL ANAL, V38, P1, DOI DOI 10.1080/00036819008839957
  • [9] Li H., 2012, NONLINEAR FUNCTIONAL, V17, P109
  • [10] Li H.-G., 2008, Nonlinear Analysis Forum, V13, P205