Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics

被引:126
作者
Zhang, Yong [1 ,2 ]
Jeong, Chang Kyu [2 ,3 ]
Wang, Jianjun [2 ]
Sun, Huajun [1 ]
Li, Fei [2 ]
Zhang, Guangzu [2 ]
Chen, Long-Qing [2 ]
Zhang, Shujun [4 ]
Chen, Wen [1 ]
Wang, Qing [2 ]
机构
[1] Wuhan Univ Technol, Ctr Smart Mat & Device Integrat, Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Chonbuk Natl Univ, Div Adv Mat Engn, Jeonju 54896, Jeonbuk, South Korea
[4] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
关键词
Piezoelectricity; Polymer composite; 3D ceramics; Energy harvesting; Cellulose; LEAD-FREE;
D O I
10.1016/j.nanoen.2018.05.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible piezoelectric materials have attracted rapidly growing attention because they offer an efficient route to scavenge energies from the living environment to power personal electronics and nanosystems. Current polymer composites with low-dimensional piezoceramic fillers suffer from poor stress transfer from the polymer matrix to the active ceramic fillers, thus significantly limiting the energy harvesting performance. Herein, an interconnected 3D piezoceramic skeleton has been developed by a biofibril template method using the newly developed rare-earth Samarium-doped Pb(Mg1/3Nb2/3)O-3-PbTiO3 (Sm-PMN-PT) for flexible piezoelectric polymer composites. When subjected to external mechanical stimulation, the 3D interconnected structure results in effective stress transfer, and consequently, greatly enhanced energy harvesting output. The 3D piezocomposite shows the open-circuit output voltage and short-circuit current density up to similar to 60 V and similar to 850 nA cm(-2), respectively, with the maximum instantaneous power density of similar to 11.5 mu W cm(-2) which is similar to 16 times higher than that of the conventional nanoparticle-based composite. The remarkable enhancement in the tress transfer ability and piezoelectric response of the biofibril-templated 3D structure have also been verified by phase-field simulations. This work provides a promising paradigm for the development of high-performance flexible energy harvesting materials.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 30 条
[1]   A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite [J].
Baek, Changyeon ;
Yun, Jong Hyuk ;
Wang, Ji Eun ;
Jeong, Chang Kyu ;
Lee, Keon Jae ;
Park, Kwi-Il ;
Kim, Do Kyung .
NANOSCALE, 2016, 8 (40) :17632-17638
[2]   Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 [J].
Balke, Nina ;
Winchester, Benjamin ;
Ren, Wei ;
Chu, Ying Hao ;
Morozovska, Anna N. ;
Eliseev, Eugene A. ;
Huijben, Mark ;
Vasudevan, Rama K. ;
Maksymovych, Petro ;
Britson, Jason ;
Jesse, Stephen ;
Kornev, Igor ;
Ramesh, Ramamoorthy ;
Bellaiche, Laurent ;
Chen, Long Qing ;
Kalinin, Sergei V. .
NATURE PHYSICS, 2012, 8 (01) :81-88
[3]   Biotemplated Synthesis of PZT Nanowires [J].
Cung, Kellye ;
Han, Booyeon J. ;
Nguyen, Thanh D. ;
Mao, Sheng ;
Yeh, Yao-Wen ;
Xu, Shiyou ;
Naik, Rajesh R. ;
Poirier, Gerald ;
Yao, Nan ;
Purohit, Prashant K. ;
McAlpine, Michael C. .
NANO LETTERS, 2013, 13 (12) :6197-6202
[4]   Flexible Ionic Diodes for Low-Frequency Mechanical Energy Harvesting [J].
Hou, Ying ;
Zhou, Yue ;
Yang, Lu ;
Li, Qi ;
Zhang, Yong ;
Zhu, Liang ;
Hickner, Michael A. ;
Zhang, Q. M. ;
Wang, Qing .
ADVANCED ENERGY MATERIALS, 2017, 7 (05)
[5]   A phase-field model for evolving microstructures with strong elastic inhomogeneity [J].
Hu, SY ;
Chen, LQ .
ACTA MATERIALIA, 2001, 49 (11) :1879-1890
[6]   Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester [J].
Hwang, Geon-Tae ;
Park, Hyewon ;
Lee, Jeong-Ho ;
Oh, SeKwon ;
Park, Kwi-Il ;
Byun, Myunghwan ;
Park, Hyelim ;
Ahn, Gun ;
Jeong, Chang Kyu ;
No, Kwangsoo ;
Kwon, HyukSang ;
Lee, Sang-Goo ;
Joung, Boyoung ;
Lee, Keon Jae .
ADVANCED MATERIALS, 2014, 26 (28) :4880-+
[7]   Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester [J].
Jeong, Chang Kyu ;
Baek, Changyeon ;
Kingon, Angus I. ;
Park, Kwi-Il ;
Kim, Seung-Hyun .
SMALL, 2018, 14 (19)
[8]   Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film [J].
Jeong, Chang Kyu ;
Han, Jae Hyun ;
Palneedi, Haribabu ;
Park, Hyewon ;
Hwang, Geon-Tae ;
Joung, Boyoung ;
Kim, Seong-Gon ;
Shin, Hong Ju ;
Kang, Il-Suk ;
Ryu, Jungho ;
Lee, Keon Jae .
APL MATERIALS, 2017, 5 (07)
[9]   Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film [J].
Jeong, Chang Kyu ;
Cho, Sung Beom ;
Han, Jae Hyun ;
Park, Dae Yong ;
Yang, Suyoung ;
Park, Kwi-Il ;
Ryu, Jungho ;
Sohn, Hoon ;
Chung, Yong-Chae ;
Lee, Keon Jae .
NANO RESEARCH, 2017, 10 (02) :437-455
[10]   A Hyper-Stretchable Elastic-Composite Energy Harvester [J].
Jeong, Chang Kyu ;
Lee, Jinhwan ;
Han, Seungyong ;
Ryu, Jungho ;
Hwang, Geon-Tae ;
Park, Dae Yong ;
Park, Jung Hwan ;
Lee, Seung Seob ;
Byun, Myunghwan ;
Ko, Seung Hwan ;
Lee, Keon Jae .
ADVANCED MATERIALS, 2015, 27 (18) :2866-+